We welcome Leonardo Fedrigotti, Martina Barbagallo and Davide crucitti, who will start their master thesis on chemometrics related topics. In particular, Martina will develop and validate proper chemometrics strategies based on advanced neural networks and deep-learning models to predict the molecular structure of some substances starting from their LC-MS/MS spectra, which were previously organized in a database. Davide will work in the field of QSAR, developing a model to classify substrates, inhibitors and non-active compounds of P-Glycoprotein using artificial neural networks. His project will be carried out at the Slovenian National Institute of Chemistry. Leonardo will develop a model which is able to couple GC-MS data and features of encephalographic responses (EEG) measured with portable low-cost devices to assess odor-stimulated emotions and to ensure scientific measurements of such signals. Coupling and comparison of analytical sources will be carried out through chemometrics methods. This project will be carried out at P&G (Bruxelles).
News
Premio Squinzi
Congratulations to Pietro Bertani for the “Premio Giorgio Squinzi” for his master thesis “A multivariate approach at the thermodynamic properties of polyamino polycarboxylic complexes with paramagnetic and other endogenous metal ions” (which was developed in collabroation with Bracco) and congratulations also to his supervisors Roberto Todeschini and Alessandro Maiocchi.
NURA: a curated dataset of nuclear receptor modulators
NURA (curated NUclear Receptor Activity dataset) is a curated dataset of nuclear receptor modulators. It contains bioactivity annotations for 15,206 molecules and 11 selected Nuclear Receptors (NRs) obtained by integrating and curating data from toxicological and pharmacological databases. The data can be dowloaded at Zenodo: https://doi.org/10.5281/zenodo.3991561; details on this dataset can be found here: Valsecchi, C., Grisoni, F., Motta, S., Bonati, L., Ballabio, D. (2020) NURA: a curated dataset of nuclear receptor modulators, Toxicology and Applied Pharmacology, 407, 115244 [link]
New book chapter: Chemometrics for QSAR Modeling
Todeschini, R., Consonni, V., Ballabio, D., Grisoni, F. (2020) Chemometrics for QSAR Modeling. In Comprehensive Chemometrics (Second Edition), S. Brown, R. Tauler, B. Walczak (Eds.), Elsevier [link]
New chapter on distance and similarity measures
Here a new chapter just published in the Encyclopedia of Analytical Chemistry (Wiley) on distance and simialrity measures for chemical data: Todeschini, R., Ballabio, D. and Consonni, V. (2020). Distances and Similarity Measures in Chemometrics and Chemoinformatics. In Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.) [link]
Bayes and majority voting consensus for MATLAB
New Matlab toolbox available for the calculation of high level data fusion (consensus) approaches (majority voting and Bayes consensus with discrete probability distributions): https://michem.unimib.it/download/data/bayes-and-majority-voting-consensus-for-matlab/
Consensus to enanche QSAR modelling: a large-scale case study
Our latest publication on data fusion, consensus and QSAR is available on line: Valsecchi, C., Grisoni, F., Consonni, V., Ballabio, D. (2020), Consensus versus individual QSARs in classification: comparison on a large-scale case study, Journal of chemical information and modeling, 60, 1215-1223 [link]
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity
This publication was the outcome of a great collaborative project for the identification of Androgen Receptor Activity through machine learning and consensus analysis, check it out: Mansouri, K. et al. (2020) CoMPARA : Collaborative Modeling Project for Androgen Receptor Activity. Environmental Health Perspectives, 128, 027002 [link]
Geographical identification of Chianti red wines
This scientific publication was the outcome of a long collaboration with Ruffino, check it out: Bronzi, B., Brilli, C., Beone, G.M., Fontanella, M.C., Ballabio, D., Todeschini, R., Consonni, V., Grisoni, F., Parri, F., Buscema, M. (2020), Geographical identification of Chianti red wine based on ICP-MS element composition, Food Chemistry, 315, 126248 [link]
Available PhD position for Molecular Modeling and Virtual Screening
Available PhD position for Molecular Modeling and Virtual Screening for Rational Design of Tubulin-Protein Interaction Modulators at TubInTrain (European Joint Doctorate on chemistry and biology). For further info: https://www.tubintrain.eu/phd-project-esr2/