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Sommario

Giacomo Baccolo

Chemometrics approaches for the automatic analysis of

metabolomics GC-MS data

La metabolomica, che consiste nella identificazione di tutti i metaboliti presenti

all’interno dei campioni biologici analizzati, è un approccio affascinante e ampiamente

applicato in diversi campi di ricerca quali: identificazione di biomarcatori, sviluppo di

nuovi farmaci scienze alimentari e ambientali.

La metabolomica è strettamente legata alla capacità di tecniche analitiche fra queste

una delle più applicate è la gas cromatografia accoppiata alla spettrometria di massa.

Moderne piattaforme analitiche possono generare centinaia di migliaia di spettri, rile-

vando una quantità impressionante di molecole distinte. Nonostante i progressi tecnici

raggiunti sul lato sperimentale, o a causa di questi, la conversione dei segnali misurati

dagli strumenti in informazioni utili non è un passaggio scontato in studi metabolomici.

Per ogni composto identificato, l’obbiettivo è ottenere la concentrazione relativa tra

tutti i campioni analizzati e lo spettro di massa associato al composto utilizzato poi

per l’identificazione della molecola stessa. I segnali ottenuti da strumenti GC-MS sono

complessi e i software disponibili per l’analisi dei dati sperimentali sono stati ripetuta-

mente indicati come una fonte importante di incertezza, limitando fortemente sia la

quantità che la qualità delle informazioni estratte. La maggior parte degli approcci,

o almeno i più applicati, si basano sull’analisi univariata dei dati, considerando ogni

campione separatamente dagli altri e richiedono l’impostazione di diversi parametri da

parte dell’operatore, influenzando il risultato dell’analisi.

In questa tesi è descritto un nuovo approccio, chiamato AutoDise, per l’analisi dei dati
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GC-MS. L’elaborazione dei segnali sperimentali si basa su PARAFAC2. PARAFAC2 è

un modello che scompone dati multidimensionali, discriminando tra i diversi segnali

nei campioni. L’efficacia di PARAFAC2 nell’estrarre segnali chimici dai dati GC-MS è

stata ampiamente dimostrata. Grazie alle sue proprietà intrinseche, PARAFAC2 non

ha quasi bisogno che i dati siano pretrattati e non richiede di impostare parametri,

mentre software utilizzati in questo ambito richiedono di definire diversi parametri e un

laborioso pretrattamento dei dati, è quindi necessario l’intervento di un utente esperto,

inoltre la riproducibilità dei risultati è limitata, dipendendo da come i parametri sono

stati scelti per l’ analisi.

Tuttavia, il fitting di modelli PARAFAC2 coinvolge diverse fasi ed è necessario un

esperto analista per l’analisi e l’interpretazione dei modelli. AutoDise è un sistema

esperto in grado di gestire tutti i passaggi riguardanti la modellazione e di generare

una tabella dei picchi in cui ogni composto è identificato in modo univoco, con risultati

completamente riproducibili. Questo è possibile grazie alla combinazione di diverse

strumenti diagnostici e grazie all’ applicazione di modelli d’intelligenza artificiale. Le

prestazioni dell’approccio sono state testate su un complesso dataset di oli d’oliva

ottenuto tramite analisi GC-MS. I dati sono stati analizzati sia manualmente, da utenti

esperti, sia automaticamente con il metodo AutoDise proposto e le tabelle dei picchi

risultanti sono state confrontate. I risultati mostrano che AutoDise supera l’analisi

manuale sia in termini di numero di composti identificati che di qualità dell’identifica-

zione e della quantificazione. Inoltre, è stata sviluppata una GUI dedicata per rendere

l’algoritmo più accessibile a persone non esperte nel linguaggio di programmazione.

Nella tesi è incluso un tutorial che mostra le caratteristiche principali e come utilizzare

l’interfaccia grafica.

Un’altra parte importante del progetto è stata dedicata al test e allo sviluppo di

nuove reti neurali artificiali da implementare nel software AutoDise per rilevare quali

componenti PARAFAC2 stanno fornendo informazioni chimicamente utili. A tal fine,

più di 170.000 profili sono stati etichettati manualmente, al fine di addestrare, validare

e testare una rete neurale convoluzionale e una rete bilineare con memoria a breve

termine e un modello k-nearest neighbour. I risultati suggeriscono che le reti di deep

learning possono essere efficacemente applicate per la classificazione automatica dei

profili cromatografici.
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Resumé

Giacomo Baccolo

Chemometrics approaches for the automatic analysis of

metabolomics GC-MS data

Metabolomis, der sigter mod en omfattende karakterisering af metabolitterne i en

prøve, er en tiltalende og bredt anvendt videnskabelig metode, der anvendes inden for

adskillige forskningsområder, såsom identifikation af biomarkører, lægemiddelopdagelse,

fødevarevidenskab og miljøvidenskab. Ofte er de analyserede prøver karakteriseret ved

komplekse matricer, f.eks. biologisk væv, fødevarer eller jordprøver. Metabolomics er

tæt forbundet med analytiske teknikker, og en af de mest anvendte er gaskromatografi

i forbindelse med massespektrometri. Moderne analytiske platforme kan generere hund-

redtusindvis af spektre og påvise en imponerende mængde af forskellige molekyler. På

trods af, eller på grund af, de tekniske fremskridt, der er opnået på den eksperimentelle

side, er oversættelsen af de signaler, der måles af instrumenterne, til letanvendelige op-

lysninger, stadig en flaskehals inden for metabolomics. For hver identificeret forbindelse

ønskes den relative koncentration på tværs af de analyserede prøver samt det tilhørende

massespektrum. Signalerne fra GC-MS-instrumenter er komplekse, og den software, der

er til rådighed til analyse af de eksperimentelle data, er gentagne gange blevet angivet

som en væsentlig kilde til usikkerhed, hvilket i høj grad begrænser både kvantiteten og

kvaliteten af de ekstraherede oplysninger. De fleste metoder, eller i hvert fald de mest

anvendte, er baseret på univariat analyse af data, hvor hver prøve betragtes separat fra

de andre. Ofte kræves en besværlig manuel indsats for at indstille de ofte mangepara-

metre, der påvirker analyseresultatet. Denne afhandling omhandler præsentationen af

en ny metode kaldet AutoDise til analyse af GC-MS-data. Det mest kritiske trin består
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i at udtrække bidrag fra de enkelte kemiske komponenter fra de eksperimentelle data

ved hjælp af modellen PARAFAC2. PARAFAC2-modelleringsmetoden dekomponerer

de multilineære data og skelner mellem de forskellige signaler på tværs af prøverne.

PARAFAC2’s effektivitet med hensyn til at udtrække meningsfulde kemiske signaler

fra GC-MS-data er blevet demonstreret i vid udstrækning. På grund af sine egenskaber

har PARAFAC2 næsten intet behov for forbehandling af data, og der kræves ingen

kritiske indstillinger, hvorimod andre metoder kræver indstilling af flere parametre og

en besværlig forbehandling af dataene, hvilket kræver at brugeren er yderst erfaren. .

Tilpasning af PARAFAC2-modeller involverer imidlertid forskellige faser, og der kræves

en dygtig tensoranalytiker til analyse og fortolkning af modellerne. AutoDise er et

ekspertsystem baseret på statistisk diagnostik og kunstig intelligens, som kan tage sig

af alle modelleringsaspekter og generere en peaktabel, hvor hver kemisk forbindelse

er identificeret og kvantificeret, og hvor resultaterne er reproducerbare. Metodens

ydeevne er blevet testet på et komplekst datasæt af jomfruolivenolier af forskellige

kvalitetsklasser, hvis aroma profiler blev målt ved hjælp af fastfasemikroekstraktion -

GC/MS. Dataene er blevet analyseret både manuelt af erfarne brugere og automatisk

med den foreslåede AutoDise-metode, og de resulterende peaktabeller er blevet sam-

menlignet. Resultaterne viste, at AutoDise overgår den manuelle analyse både med

hensyn til antallet af identificerede forbindelser og kvaliteten af identifikationen og

kvantificeringen. Desuden er der udviklet en dedikeret GUI for at gøre algoritmen mere

tilgængelig for personer, der ikke har kendskab til programmeringssprog. Afhandlingen

indeholder en vejledning, der viser de vigtigste funktioner og viser, hvordan man bruger

den grafiske grænseflade. En anden vigtig del af afhandlingen var afsat til test og

udvikling af nye kunstige neurale netværk, der skal implementeres i AutoDise-softwaren

til at registrere hvilke PARAFAC2-komponenter, der giver kemisk nyttig information.

Med henblik herpå er mere end 170 000 profiler blevet mærket manuelt med henblik på

at træne, validere og teste et konvolutionelt neuralt netværk og et bilineært langtids-

og korttidshukommelsesnetværk samt en k-nærmeste nabomodel. Resultaterne tyder

på, at deep learning-netværk effektivt kan anvendes til automatisk klassificering af

kromatografiske profiler.
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Abstract

Giacomo Baccolo

Chemometrics approaches for the automatic analysis of

metabolomics GC-MS data

Metabolomics, aiming at the comprehensive characterization of the metabolites in

a sample, is an appealing and widely applied scientific approach applied in several

research fields, such as biomarker identification, drug discovery, food science and

environmental science. Often, the analyzed samples are characterized by complex

matrices, such as biological tissues, foods or soil samples. Metabolomics is closely

related to analytical techniques and one of the most applied is Gas Chromatography

connected to Mass Spectrometry. Modern analytical platforms can generate hundreds

of thousands of spectra, detecting an impressive amount of distinct molecules. Despite,

or because, the technical progress achieved on the experimental side, the translation

of the signals measured by the instruments into easily expendable information is still

a major bottleneck in metabolomics. For each identified compound, it is desired to

have the relative concentration across the analyzed samples as well as the associated

mass spectrum. The signals from GC-MS instruments are complex and the software

available for the analysis of the experimental data have been repeatedly indicated as a

major source of uncertainty, strongly limiting both the quantity and the quality of

the extracted information. Most of the approaches, or at least the most applied, are

based on the univariate analysis of the data, considering each sample separately from

the others and requiring laborious manual efforts for the setting of several parameters

that affect the result of the analysis. This thesis deals with the presentation of a

new approach called AutoDise for the analysis of GC-MS data. The most critical

step, that consist in the extraction of the pure contributions from the experimental
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data, is performed by means of PARAFAC2. The PARAFAC2 modelling approach

decomposes the multilinear data, discriminating among the different signals across

the samples. The efficacy of PARAFAC2 to extract meaningful chemical signals

from GC-MS data has been widely demonstrated. Because of its intrinsic properties,

PARAFAC2 has almost no need for data preprocessing, no critical settings are required,

whereas other approaches need to set several parameters and a laborious pretreatment

of the data, requiring an extremely skilled user and dramatically reducing results

reproducibility. However, fitting PARAFAC2 models involves different phases and a

skilled tensor analyst is required for the analysis and interpretation of the models.

AutoDise is an expert system based on statistical diagnostics and Artificial Intelligence,

which is able to take care of all the modeling aspects and to generate a peak table

where each compound is univocally identified and fully reproducible results. The

performance of the approach has been tested on a complex dataset of virgin olive

oils with different quality grades, whose volatile profiles were obtained by solid-phase

microextraction - GC/MS. The data have been analyzed both with a commercial

software, by experienced users, and automatically with the proposed AutoDise method

and the resulting peak tables have been compared. The results showed that AutoDise

overcome the manual analysis both in terms of number of identified compounds and in

quality of the identification and quantification.

Moreover, a dedicated GUI has been developed to make the algorithm more

accessible to people not skilled in programming language. A tutorial is included in the

thesis, showing the main features and how to use the graphical interface.

Another important part of this thesis is devoted to the test and development of new

artificial neural networks to be implemented in the AutoDise software for detecting

which PARAFAC2 components that are providing chemically useful information. To

this end, more than 170,000 profiles have been manually labeled, in order to train,

validate and test a convolutional neural network and a bilinear long short term

memory network and a k-nearest neighbour model. The results suggest that deep

learning networks can effectively be applied for the automatic classification of the

chromatographic profiles.
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Chapter 1

Introduction and aim of the thesis

In 1951 Roger Williams, biochemist at the University of Texas, introduced the concepts

that nowadays are considered as the basis of omics and related fields such as systems

biology and personalized medicine, where omics tools are massively applied (Rattray

et al., 2014; Huan et al., 2017; Rosato et al., 2018; Jacob et al., 2019).

Generalizations with respect to human beings are very much to be desired,

but unless the generalizations are backed by adequate information, they

are premature and superficial and liable to be incapable of substantiation.

The writer envisaged and still envisages the time when real people will be

studied from any and every angle and when no promising discipline will be

ignored in connection with such studies (Williams and Berry, 1951).

In particular, Williams and his colleagues were focused on metabolic patterns.

Analyzing body fluids, they demonstrated that specific conditions, e.g., alcoholism

or schizophrenia, were characterized by specific metabolites. He defined metabolic

patterns as follow:

Insofar as the total picture of the metabolism of an individual (including

the chemical processes in each and every organ and tissue and their effects

on each other) is distinctive, it constitutes his metabolic pattern (Williams

and Berry, 1951).

In more recent years, this definition would perfectly fit metabolomics. Since

Williams’ pioneering work, the development of metabolomics or metabolic profiling has
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been intrinsically linked to a comprehensive overview of the analyzed samples, aiming

to identify as many metabolites as possible, ideally all of them.

Formally a metabolite is an intermediate or an end product in biosynthetic or

degradative pathways of a given organism (Cox and Nelson, 2008), as such metabolomics

is focused on relatively small molecules and usually the molecular weight does not

exceed 1000-1500 Da.

Common metabolomics applications range from bio markers identification (John-

son, Ivanisevic, and Siuzdak, 2016) to drug discovery (Wishart, 2016), however the

applications where this philosophy has been embraced are countless, ranging from

food fraud detection (Cubero-Leon, Peñalver, and Maquet, 2014), to environmental

risk assessment (Bundy, Davey, and Viant, 2009). Moreover, metabolic profiling is

increasingly applied in regulatory contexts such as industrial chemistry and food safety

(European Chemicals Agency, 2016; European Food Safety, 2014).

The number of molecules that can be identified with a metabolomics experiment

obviously depends on the samples analyzed, but it is impressive. For example, the

metabolites in an organism are estimated between 1000 and 40000, depending on

the species (Alseekh and Fernie, 2018). Nucleotides, vitamins, organic acids, lipids,

antibiotics are just a small fraction of the molecules that make up the metabolome.

Metabolites are characterized by a rapid turnover and the broad dynamic range of

abundance of the different molecules (Alseekh et al., 2021). Modern analytical plat-

forms can detect hundreds or even thousands of different molecules, apparently making

the vision of metabolomics studies a reality (May and McLean, 2016; Tauler and

Parastar, 2018). However, a metabolomic experiment is a multistep process (Goodacre

et al., 2007), where the analysis of the samples is just one of the first points.

A common pipeline for a metabolomic experiment consists of:

1. Experimental design;

2. Sample collection;
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3. Data acquisition;

4. Data preprocessing;

5. Metabolite/molecules identification and quantification;

6. Statistical data analysis;

7. Interpretation.

Experimental design includes selecting which analytical platform to use, the type

and the number of samples, the number of experiments, in relation to the specific aim,

e.g., to test a biological hypothesis or to discover new biomarkers.

After that, during the samples collection they are prepared for analysis through the

analytical platform chosen. This usually entails an extraction or a derivatization step.

Next, the data generated by the analytical platform has to be preprocessed in order to

extract the relevant information from the data, i.e., identify the signals related to the

chemical compounds.

The extracted signals are used to quantify and identify chemical compounds. This

step leads to the peak table where for each sample the amount of each compound is

reported and its structure is identified.

The statistical data analysis of the peak table and interpretation steps aim at answering

the scientific question at the base of the experiment through (univariate/multivariate)

statistical tools. As such the last two steps are the core of all the metabolic profiling

experiments and intrinsically depend on the results of the previous phases.

While on the experimental side major progress has been made, data preprocessing

and molecule identification have been repeatedly reported as the main bottleneck in

metabolomics experiments (Dunn et al., 2013; Sévin et al., 2015; Schrimpe-Rutledge

et al., 2016; Chaleckis et al., 2019), despite the number of tools developed by the

scientific community to handle this step (Stein, 1999; Tautenhahn et al., 2012; Tsugawa

et al., 2015; Domingo-Almenara et al., 2016). This is reflected in issues such as:

• The time consumption for the analysis of the instrumental signals (Koek et al.,

2011);
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• The not effective translation of the experimental data into new knowledge (Clarke

et al., 2008);

• The low reliability of the analysis performed on the peak table, due to the false

discovery rate of the compounds; (Schrimpe-Rutledge et al., 2016);

• The non-robustness, e.g., in the sense that different users often do not obtain

similar results or different software packages do not achieve the same results

The main goal of this project was to develop a truly automated algorithm, called

AutoDise, for the automate analysis of gas chromatography - mass spectrometry data,

one of the most applied techniques for metabolomics experiments, obtained from

metabolomics experiments. The algorithm is based on the combination of chemometric,

statistical and deep learning approaches to automatically resolve, extract, quantify

and identify the signals of the chemical compounds measured by the instrument. The

output consists of a non redundant peak table, thus AutoDise automatically handles

the data preprocessing and metabolite/molecule identification and quantification steps

with no actions required by the user. The main advantages we hope and hypothesize

to gain compared to the current state-of-the-art are:

• The absence of interaction with user, reducing the variability of the resulting

peak table;

• Allowing to reliably detect many more compounds, e.g., compounds that are not

visually apparent or are suffering from severe coelution.

The rest of this thesis is organized as follow:

• The analytical approaches applied in metabolic profiling, particularly focused on

Gas Chromatography - Mass Spectrometry, are described in Chapter 2;

• An overview of the available approaches for the analysis of GC-MS data is given

in Chapter 3;

• The methods employed during the project are described in Chapter 4;

• In Chapter 5 the results obtained concerning AutoDise are shown. The overall

method, a case study to test the algorithm performances, the GUI implemented
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to support the use of the algorithm and the results for the application of ANN

for the classification of resolved elution profiles are described.

• The conclusions and the future perspectives are discussed in Chapter 6
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Chapter 2

Analytical platforms in metabolic pro-

filing

Regardless of the specific field of application, metabolomics is strictly related to the

development of analytical techniques for the detection of molecules. Starting from the

paper chromatography applied by Williams and his colleagues, where the experimental

results were mainly qualitative (Williams and Berry, 1951), nowadays modern analytical

platforms can analyze impressive number of samples and discriminate hundreds of

molecules.

In the context of metabolomics and related fields, there are two main analytical

approaches:

• NMR;

• hyphenated chromatography.

Both these approaches have strengths and weaknesses.

NMR is characterized by high reproducibility, low cost and time for the analysis of the

sample. Instead, hyphenated chromatography is by far more sensitive, detecting more

metabolites even at very low concentration (Emwas, 2015); Wishart, 2008 Markley

et al., 2017 and Wishart, 2019 are suggested for an excellent overview about NMR in

the context of metabolomics.

This thesis is focused on the analysis of hyphenated chromatography data. Hyphenated

chromatography generally refers to the online combination of two separate analytical
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techniques connected by appropriate interfaces (Hirschfeld, 1980). In the context

of metabolomics, most often, the chromatographic system is connected to a mass

spectrometer. The connection of multiple chromatographic systems and mass spectrom-

eters is also possible, leading to the so called hypernation (Wilson and Brinkman, 2003).

Samples as food, oils, body fluids, cells are characterized by complex matrices and

include several different chemical compounds with significant differences in terms of

abundance from molecule to molecule. The coupling of a chromatographic method

and a mass spectrometer takes advantage of both the methods. Chromatography

separates pure or nearly pure bands of chemical components in a mixture. Mass spec-

trometry gives selective information for identification using standards or library spectra.

2.1 Targeted and untargeted approaches

In metabolomics the two main experimental approaches are the targeted approach

and the untargeted approach. The targeted approach refers to the analysis of a

subset of defined metabolites/molecules. Usually, the subset is selected according

to the experimental hypothesis. Defining a priori the subset of molecules allows an

appropriate setting of the experimental procedures, but the analysis are typically

limited to a small number of molecules. However, lead by technological advances, the

subset of metabolites that can be analyzed simultaneously has steadily increased over

the recent years (Roberts et al., 2012), up to a hundred.

The untargeted approach refers to the measurement of all the molecules within the

analyzed sample, rather than just a small, predefined subset (Schrimpe-Rutledge et al.,

2016). The analysis of the results and the comparison of samples can lead to new

hypotheses that require ad hoc experiment to be tested.

The two approaches can be seen as complementary to each other: the hypothesis tested

with a targeted analysis comes from observation based on the experiments performed

with an untargeted approach (Diederen et al., 2021). The focus in this thesis is on the

analysis of data obtained with an untargeted approach.
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2.2 Introduction to chromatography

The term chromatography derives from the Greek words χρωµα (chroma) and γραϕω

(grapho), it was introduced by the Russian botanist Mikhail Tswett, who invented this

method. He packed a column of glass with calcium carbonate and inserted a sample of

plant extract at the top of the column. Then he filled the column with a mixture of

petrol ether and ethanol. The flow of the mixture caused the plant pigments, contained

in the extracts, to separate along the column with three different colored bands, hence

the name chromatography.

Since then, a number of different chromatographic system have been developed,

nonetheless all of them have in common the flow of a mixture of analytes (the plant

extract in Tswetts’ experiment) through a stationary phase (calcium carbonate) carried

by a mobile phase (the mixture of petrol ether and ethanol).

The first classification for chromatographic systems is column chromatography, where

the stationary phase is placed in a column, or planar chromatography where the

stationary phase is hold on the surface of a flat plate or in a paper. In metabolomics

and metabolic profiling column chromatography is the gold standard.

Column chromatography can be classified depending on the state of the mobile

phase: liquid and gas chromatography. This thesis is mainly focused on gas chromatog-

raphy but some of the considerations in this paragraph apply in general for column

chromatography.

The column is a thin tube with an adsorptive material (the stationary phase), coated

on either inert solid particles (usually LC) or the walls of the tube (usually GC); the

mobile phase, gaseous or liquid, is introduced in the column from the head. The

sample, made of a mixture of different compounds, is injected in the head of the

column. Fresh mobile phase is added, forcing the movement trough the column of

the compounds. This process is called elution and the fresh mobile phase is the eluent.

The fundamental mechanism that separates the molecules of a sample is based on

the different distribution constants between the mobile and stationary phase of the
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Figure 2.1 – Separation in chromatography. The dotted area represents the stationary
phase. At the beginning of the elution, all the analytes are positioned in the same band.
During the elution through the column, they move with different speeds, separating from
each other, and will therefore have different retention times. As long as no analyte elutes,
the signal measured by the detector is a flat line resulting from the constant flow of the
mobile phase. When a molecule elutes and reaches the detector, the corresponding signal
is recorded.

different compounds. Movement of a molecule through the column is only possible

in the mobile phase, so the time required to pass through the column is related to

the amount of time spent in this phase. Different molecules have different affinities

for the mobile and stationary phase and therefore different velocities during elution;

this is the key factor that separates molecules in chromatography. During the elution,

each molecule is focused in specific bands; the final separation is achieved at the

end of the column where the different bands can be collected or measured with a

detector. Monitoring the elution process with a detector, it is possible to display the

signal changes during the process as a function of time; the resulting plot is called

chromatogram. In general a chromatogram is made of a flat constant signal, given by

the continuous flow of the eluent, and peaks. The peaks represent the elution of a

specific band through the end of the column, of course it means that the detector can

interact somehow with the eluting molecule. In figure 2.1 a graphical representation of

the process is given.

The chromatogram gives both qualitative (the presence or the absence of a given
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Figure 2.2 – Two chromatograms are represented. On the x axes is reported the Retention
time in seconds, on the y axes the intensity of the signal in Arbitrary units (A.U.). a) Two
resolved peaks. The elution of the compounds happens at different time points, thus the
signals are not overlapping each other, this is an example of optimal resolution. b) Two
unresolved peaks. The second peak starts to elute while the first is still coming out from
the column. In this case the signals are overlapped and the peaks are not resolved.

molecule) and quantitative (the relative or absolute amount of each species) information.

Ideally speaking, the peaks should be separated from each other in the chromatogram,

meaning that the different compounds elute at different times. The more two adjacent

peaks are distant to each other, the better they are separated. This can be measured

in terms of resolution, which is the difference of the retention times of the two peaks

divided by their avarage peak width. The retention time is defined as the time elapsed

between sample introduction (beginning of the chromatogram) and the maximum

signal (top of the peak) of the given compound at the detector, in other words it is

the time required for a molecule to pass through the column (Skoog et al., 2013). In

figure 2.2 an example of resolved and unresolved peaks is shown.

The resolution is determined by a number of different factors such as:

Total elution time The total time of the chromatographic experiment.

Mobile phase rate The flow rate of the mobile phase.

Distribution constants The ratio of the molar concentrations for a specific species

in the stationary phase and in the mobile phase. It indicates the affinity of a

specific molecule for the stationary phase.
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Retention time The time required to a molecule to reach the detector. In particular

it corresponds to the maximum of the corresponding peak in the chromatogram.

Selectivity factor The ratio of the distribution constants for 2 molecules, the higher

is the ratio the more resolved are the corresponding peaks.

Number of plates The measure of the efficiency of the chromatographic system.

There are several rules and tricks to maximise the efficiency of a chromatographic

run, i.e., to maximise the number of resolved peaks, nonetheless it is clear that at

the increasing of the number of different molecules species in the analyzed sample,

it becomes difficult to set experimental parameters that allow an optimal resolution

for all the compounds. Moreover, some strategies can increase the resolution of the

peaks but, at the same time, lead to other problems. For instance, a program of

temperature ramp can increase the resolution of the peaks, but it can also cause drifts

in the baseline signals.

2.3 Gas chromatography

Gas Chromatography (GC) and Liquid Chromatography (LC) are both widely applied

in metabolomics (Beale et al., 2018; Zhou et al., 2012). The two approaches have a

different, although overlapped, coverage of compound classes. The two main molecular

features that impact the applicability of the two approaches are hydrophobicity and

volatility (Brack et al., 2016). In general LC has a broader range of detectable species,

but is characterized by a lower reproducibility and also the quantification of the samples

is less accurate compared to GC (Lisec et al., 2006). Nonetheless, various classes of

compounds, such as amino acids, carbohydrates, fatty acids, small molecular organic

acids, phenolics, terpenes and sterols can be effectively separated with GC.

In GC the mobile phase is an inert gas, typically helium, argon or hydrogen. The

samples are heated until the molecules reach the boiling point, at this point the

molecules are injected in the column through a valve that mixes the vaporized sample

and the mobile phase. The separation of the species follows the principles described
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Figure 2.3 – Three chromatograms are represented. On the x axes is reported the
chromatographic time in seconds, on the y axes the intensity of the signal in Arbitrary
units (A.U.). a) Resulting chromatogram from an isothermal chromatographic run at low
temperature. b) Resulting chromatogram from an isothermal chromatographic run at high
temperature. c) Resulting chromatogram from a chromatographic run with a temperature
gradient. It is possible to notice the improvements in terms of resolution of the peaks

in the previous paragraph. Given the complexity of the samples in terms of number

of compounds in a metabolic profiling experiment, usually a ramp of temperature is

applied to the column during the chromatographic run, which improves the efficiency

of the chromatographic experiment (fig 2.3).

As mentioned in the previous section, chromatography can be coupled to a detector.

In GC metabolic profiling the most common is a mass spectrometer.

2.4 Mass spectrometry

Mass spectrometry is a powerful analytical technique widely applied for the identifica-

tion of molecules. In mass spectrometry (MS) the analyzed molecules are transformed

into ions by applying energy. The ions are separated on the basis of the mass-to-charge

ratio (m/z).

The main components of a mass spectrometer are shown in figure 2.4. In GC-MS
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Figure 2.4 – Components of a mass spectrometer. The inlet system injects the sample
into the instrument. The ion source ionises the molecules. The mass analyzer filters ions
according to m/z. The detector counts the number of ions with the selected m/z. Finally
the signal is processed and transferred to the computer.

devices the gold standard ion source is electron ionization (EI). With EI, the analytes

are bombarded with a beam of electrons. The energy of the beam can remove an

electron from the analyte or also fragment the molecules, obtaining a specific pattern

of ions for each compound.

The ions are passed to a detector by a mass analyzer where the different ions are

focused as a function of the specific m/z. The detector measures the abundance of

the focused ions. Plotting the ions abundance versus the mass-to-charge ratios, it

is possible to represent the specific ion pattern for a given molecule, called a mass

spectrum.

Many different types of mass analyzers are available: Quadrupole, Time of Flight,

Quadrupole Ion Trap, Ion Cyclotron. Quadrupole and Time of Flight are the most

common mass analyzer coupled with GC systems (Lisec et al., 2006). In particular the

quadrupole enables two modes of analysis: the full scan and the selected ion monitoring

(SIM). In the full scan mode, a range of m/z ratios, typically from 50 to 500 m/z, is

measured. In SIM only a set of specific m/z is recorded. While the first approach

allows detection of a number of different compounds, the SIM mode is applied for

the detection of a specific compound of interest. Intuitively, in metabolic profiling

and metabolomics experiments, where the aim is to identify as much compounds as

possible, the full scan mode is the most applied.
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2.5 Gas chromatography - mass spectrometry

Nowadays more than 50 companies offer GC-MS platforms, suggesting how widely

applied is this technique (Skoog et al., 2013). The two instruments are coupled on-line,

thus the eluent from the GC is directly fed into the ion source of the mass spectrometer.

When the full scan mode is selected, at each scan the mass spectrometer measures

the mass spectrum at the specified m/z range. Here the scan rate is crucial; a low

scan rate increases the signal-to-noise ratio of the measurement, but the peaks could

pass through undetected, a fast scan rate decreases signal-to-noise ratio, but more

compounds are identified. Usually 2 to 5 scans per second is a good compromise.

Measuring the mass spectra as a function of time leads to a huge amount of data

for each analyzed sample. In a common GC-MS analysis, the elution time is about 30

to 60 minutes. In a 60 minutes run, with a rate scan of 3 spectra/second, 12000 mass

spectra are measured for each sample.

The eluting compounds are ionized with a high energy electrons beam, typically

with a kinetic energy of 70 eV. This value is a convention in GC-MS analysis, but

it gives some advantages. First the specific pattern of the ion fragments for a given

molecule is reproducible across different instruments (Sparkman, Penton, and Kitson,

2011). This is not true with other ionization approaches such as electronspray ionisa-

tion, used in LC-MS, performed at lower energies and not totally consistent across

different instruments.

Another advantage of EI is determined by the fact that, given the wide prevalence

of this energy of ionization, the spectral libraries include spectra obtained at this energy.

The spectral libraries play a fundamental role for the identification of the compounds

in GC-MS analysis. Once a spectrum is obtained the corresponding compound is

identified by comparing the experimental spectra with those included in the library.

One of the most known libraries for EI-MS spectra is the NIST library and the last

released version consists of 350,643 spectra of 306,869 unique compounds; most of
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Figure 2.5 – Resulting surface of a GC-MS experiment. The mass spectra are measured
as a function of time and can be displayed as a 3D surface (black areas). Another option
is to sum the ion abundance for each scan resulting in the TIC (blue curve). The same
operation in the opposite direction results in a summary of the mass spectra for a specific
compound (blue lines).

which are measured at 70 eV (NIST, 2020).

The data from each GC-MS experiment are organized in a matrix where the rows

correspond to the elution times and the columns to the measured m/z. A common way

to display the data is the Total Ion Chromatogram or Total Ion Count (TIC), where

the ion abundance of each spectrum is summed, or selecting a specific m/z resulting

in a Extracted Ion Chromatogram (EIC) and, in both cases the result is similar to a

conventional chromatogram, otherwise is possible to display all the measurements. In

this case the result is a surface; an example is given in figure 2.5.

2.6 Quantification, identification, signals and artifacts

GC-MS data can be used for the quantification and identification of compounds in a

mixture of unknown components.
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2.6.1 Quantification

The quantification of a given compound can be absolute or relative. In order to obtain

an absolute quantification of a given compound, it is necessary to build a calibration

curve with the corresponding standard. In metabolomics the absolute quantification

of compounds is possible with a targeted approach (Kapoore and Vaidyanathan, 2016;

Røst et al., 2020), but in the untargeted approach the main interest are the relative

concentrations for a given compound across the samples.

Theoretically, the quantification of a given compound across different samples is

based on the comparison of the heights or the areas of the peaks related to the same

compound. When a single sample is analyzed, both the height and area can be used

for the quantification, but usually the estimation of the height is preferred over the

area since it is easier to obtain.

Instead, when multiple samples are analyzed the area gives a more robust estimation.

In untargeted GC-MS experiments it is common to observe changes in the peaks, in

terms of width and shape, from sample to sample. This means that the height of the

peaks can determine inaccurate quantification as shown in figure 2.6.

However, the estimation of the area under the peaks presents different issues. The

first one is that the signal measured by the detector is made of different components:

the signal from the baseline, the signal from the compound, and the experimental

noise (Amigo, Skov, and Bro, 2010) (figure 2.7). The signal from the baseline consists

in a flat constant line, even though drifts in the signals are common, due to the

temperature ramp during the chromatographic run. The compound signal instead

has specific boundaries, defined by the time needed for the total elution. The noise

signal, a random variation mainly dependent on the detector and also on the sample

matrix, is constant throughout the signal detection. Thus, in order to quantify the

area under the peaks, two ways are possible: extract the specific signal of the peak or

integrate the whole area. The first case results in more accurate quantification, but is

not always clear how to obtain the original signal. In the second case, it is required

to set arbitrary boundaries, since the beginning and the end of the peak are hidden
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Figure 2.6 – A graphical example to show the different results when the height or the
area are estimated for the quantification of a peak. In black and red are represented two
chromatograms from two different samples for the same compound. The molecule has the
same quantity in the two samples. On the x axis is reported the elution time, on the y axis
the intensity of the signal. Assuming that the signal increases linearly with the number of
molecules passing through the detector, the two curves can be directly compared. When
the height is used to quantify the compounds, it results that the quantity of the compound
in sample 1 is almost doubled compared to sample 2. Instead integrating the area under
the two peaks the estimation is correct

by the total signal. The definition of the boundaries and the resulting width of the

interval can dramatically impact the final estimation as shown in figure 2.7.

Moreover, it is likely that different chromatographic runs will have different inten-

sity of the baseline, which intuitively makes even more difficult an accurate estimation

of the same compound across different samples.

When two signals overlap each other, there are different ways to estimated the

limits of the peaks. The most common approaches, depicted in figure 2.8 are:

Drop method A straight vertical line is drawn starting from the valley point between

the two peaks. The estimations are not accurate, in particular for the smaller

peak. The error depends on many factors such as the ratio of the dimensions

of the two peaks, the degree of overlap and the asymmetry. Only in specific

(unlikely) cases, the estimations are correct and the following conditions must be

met (Dyson and Smith, 1998):
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Figure 2.7 –
a, b and c: Individual contributions in a chromatographic signal
d: Resulting estimated area within different boundaries. Two sets of boundaries have
been defined (solid black lines and dotted black lines). The corresponding estimated area,
considering the TIC, are reported. The original area for the red peak is reported as 100%,
the areas evaluated directly from the TIC are reported as the difference to the true area.
Notice that the wider interval, defined by the black lines, leads to an over estimation of
30% compared to the true area. Instead with a narrower interval the overestimation is
greatly reduced.

1. the peaks are equal;

2. if the peaks have different heights, the valley is less then 5% of the smallest

peak;

3. the baseline is flat

4. the peak limits and the valley point can be precisely identified.

Valley method The start and stop points are set at the valley between the peaks.

For each peak a straight line is drawn to the left or the right connected with the

baseline. This method results in underestimation for both the peaks, particularly

for the smaller peak.

Exponential skim method An exponential curve is fitted starting from the valley

point to the baseline for each peak. Here shoulder peaks, i.e., peaks emerging on
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Figure 2.8 – Graphical representation of common methods for the estimation of the area
under coeluting peaks.

the tails of other peaks, are underestimated (Bicking, 2006).

Gaussian skim method Similar to the exponential skim method but a Gaussian

curve is fitted. This method assumes Gaussian shapes for chromatographic peaks,

but, although this is a nice approximation, this is not the case for many peaks.

In addition, all these methods (graphically represented in figure 2.8) require a

valley point, so it must be evident that two compounds are eluting at the same time.

However, in severe co-elution, different compounds can elute at the same time, making

the detection difficult and these methods inapplicable as shown in figure 2.9. It is

still controversial whether the height or the area should be used to quantify the peaks

(Dyson and Smith, 1998; Bicking, 2006). However in the cases of absolute quantification

and semi relative quantification across different samples the estimation of the area is

more robust compared to height (Dyson and Smith, 1998).
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2.6.2 Identification

In untargeted analysis, the identification of the compounds relies on the comparison of

the experimental (measured) mass spectra with respect to spectral libraries. The main

distance applied to compare different spectra is the cosine distance (Stein and Scott,

1994; Stein, 1999), defined as:

cos(x,y) =

∑n
i=1 xiyi√∑n

i=1 (xi)2
√∑n

i=1 (yi)2
(2.1)

where x and y are the two vectors representing the mass spectra and n correspond

to the number of m/z values measured by the instrument. The cosine distance measures

the angle between two vectors, so if they are pointing the same direction the angle is

0° and the cosine is 1.

The mass spectra can be directly extracted by the experimental data. Usually

the mass spectra at the maximum of the peak is considered. However, the extracted

spectra will include the signals from the compounds, the baseline, eventually co eluting

compounds, strongly limiting a correct identification . A common preprocessing for

the spectra identification is to subtract the signal of the baseline taking the spectra in

a flat region of the chromatogram (Want and Masson, 2011). However, also in this

case, the coelution of the compounds is a major obstacle to the accurate identification

of the eluting compounds. If the overlap of different compounds is not evident, the

spectra resulting from the sum of the compounds will be used during the comparison

with the spectral library, determining incorrect identification; an example is given in

figure 2.9.

2.7 Conclusions

GC-MS is a powerful analytical technique, widely applied in metabolomics experiments.

The combination of chromatography with mass spectrometry allows the detection of a

number of compounds. Nonetheless, given the complexity of the analyzed samples, the

number of molecules and the sum of different signals, the appropriate quantification

and identification of the compounds can be difficult. From the few examples shown

in this chapter, it is evident that the extraction of the relevant information can be
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Figure 2.9 –
a: Total signal from the GC-MS experiment. The TIC (black curves), the surface (grey
surface), and the m/z (black lines) are shown
b: The same signal is decomposed in the individual contributions showing that two
compounds are eluting at the same time.
The inspection of the TIC does not reveal the presence of two compounds (blue and red).
Using the raw data will lead to incorrect identification and quantification

difficult to reproduce, time consuming and requires specific know-how. In the next

chapter an overview of the software developed specifically for this task will be given.
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Chapter 3

Tools for the analysis of GC-MS data

As described in the previous chapter, the identification and quantification of the

chemical compounds from GC-MS experiments is a difficult task to handle. This is due

to the huge number of chemical compounds in the samples, the different interfering

signals and the difficulty to optimize the experimental settings to obtain resolved peaks.

In order to assist researchers in the identification and quantification of the com-

pounds from GC-MS data, several tools have been developed. In this chapter an

overview of the most used software in metabolomics is given. Some of these methods

have been developed for LC-MS analysis, nonetheless they are also applied for GC-MS

data.

All the software described here are freely available, since details about the func-

tioning of commercial tools, such as ChromaTOF (LECO corporation), Compound

Discoverer and Chromeleon (Thermo Fisher Scientific), MassHunter and ChemStation

(Agilent), are not shared by the vendors.

3.1 MZmine

Katajamaa and Orešič proposed MZmine for the first time in 2005 (Katajamaa and

Orešič, 2005), a major update of the platform has been released in 2010 (Pluskal et al.,

2010). The original focus of the platform was the analysis of LC-MS data, nonetheless
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the approach has been widely applied also for the analysis of GC-MS datasets (Pinto

et al., 2018; Araújo et al., 2018; Huang et al., 2013).

The software has been developed in java and a standalone Graphical User Interface

(GUI) is available to help users during the analysis. The overall workflow for the

identification and quantification of the peaks is based on a sequence of steps.

Software architecture MZmine is a collection of methods for the analysis of LC or

GC-MS data, the methods are organized in different independent modules:

• data import;

• data preprocessing;

• visualization;

• peak detection;

• peak identification;

each module includes the respective approaches.

Data import In the first version the only file format accepted was .cdf, while MZmine2

accepts the following file formats :

• .cdf

• .mzML

• .mxXML

• Thermo Fisher raw format

Data visualisation To visualize the loaded data, different plots are available: TIC,

2D, 3D. Another option to visualise the data is to consider only the most intense

m/z for each scan, the result is similar to the TIC and it is called Base Peak

Chromatogram (BPC). The mass spectra can be visualized in a continuous mode,

where the actual m/z are plotted or with a centroided mode (this is mostly

related to the analysis of LC-MS data where centroiding/binning of the adjacent

m/z is a common solution to handle high resolution mass spectra).
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1- Peak detection In MZmine the quantification and identification of the peaks

is called peak detection. The peak detection is a three steps process and is

performed sample wise, meaning that each sample is analyzed independently

from the others. The analysis can be performed on batch of data, thus different

samples are analyzed at the same time with the same settings. The three steps

are:

2- Mass detection The mass detection step generates a list of selected m/z ratios for

each mass spectrum. The software includes five different algorithms to perform

this step: centroid, exact mass, local maxima, recursive threshold and wavelet

transform. Each of the methods requires the user to set thresholds, for instance

the centroid method removes all the m/z signals below a given threshold set by

the user. Moreover, the user should be aware of which method is the best option

for his/her own data. The result is a list of candidate m/z ratios to represent a

given compound. A list is obtained for each mass spectrum obtained for each of

the analyzed samples.

3- Chromatogram builder In the second step the chromatogram builder uses the

mass list generated during the mass detection step to connect m/z spanning over

multiple scans. Basically it defines EICs only on selected masses. To this end

the method suggested by the authors is the Automated Data Analysis Pipeline

(ADAP) algorithm (Smirnov et al., 2018), recently implemented in the MZmine

platform. First all the selected m/z for a given sample are sorted by their

intensity. The first EIC is created according to the most intense m/z. Then the

next m/z from the sorted list is considered. If it is the same m/z to a previously

EIC defined then is added to the given EIC, otherwise a new EIC is created. The

process loops over all the m/z extracted. At the end a list of EICs is obtained.

However, not all the EICs are considered. During this step four parameters must

be defined by the user in order to select which EICs will be considered for the

next steps:

• Group intensity threshold, an intensity threshold.
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• Minimum group size in number of scans, the minimum number of sequential

scans in a given EIC having points above the group intensity threshold set

by the user.

• Minimum highest intensity, an intensity threshold. At least one m/z intensity

in the EIC must be higher or equal to the threshold.

• m/z tolerance. Maximum m/z difference of data points in consecutive scans

in order to be connected to the same EIC.

The idea is that each ion is specific for a given compound so a single peak should

be reconstructed for each chromatogram. However, it is common that more

peaks are included in a given EIC. The next step aims to resolve this issue.

Chromatogram deconvolution In this step the reconstructed chromatograms are

deconvolved into individual peaks in order obtain single peaks for each EIC

obtained by the previous step. The peak deconvolution is performed by means of

filters, in particular the continuous wavelet transform using Mexican hat wavelet

is applied. Basically it applies filter with increasing width, looking for the regions

of the chromatogram where there are peak(s).

Six parameters must be defined by the user for this step:

• a threshold to define the signal-to-noyse ratio, to remove noise peaks;

• a threshold to define the minimum intensity a peak can have to be considered

as a real peak;

• a threshold to define the minimum area under the peak;

• the minimum and maximum width of the peaks;

• the range of widths for the wavelet filter.

A given region can include one or more peaks and each of them is analyzed to

assess the number of putative compounds included. At this point a double round

hierarchical clustering to deconvolve the actual spectrum of the compound is

performed. In the first round the identified region are clustered together accord-

ingly to the retention time. At this point the number of compounds described

by the region is estimated by means of five different criteria. For each region five
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metrics are calculated and a score is assigned to assess both if a a given region is

actually representing an eluting compound and also the number of peaks, i.e.,

the number of compounds, included.

The deconvolution of the spectra is based on the detection of coherent trend

of the m/z in each region. To do so a second hierarchical clustering approach

is used to group together the m/z with similar patterns within a given region,

thus discriminating between different compounds that should have specific ion

fragments. The number of clusters is defined accordingly to the number of

compounds detected for a given region. The second clustering round requires

two settings to be defined by the user:

• the minimum distance between the analytes in terms of elution time;

• a threshold to set the minimum difference between peaks, defined as the

cosine distance of the reconstructed elution profiles.

Peak identification The identification is done by comparing the masses of the

deconvolved peaks with internal or external libraries. This step is performed

for each peak detected in each sample. Thus, after the identification, the final

step consists in the alignment of the peaks detected for each sample in order

to identify all the peaks referring to the same compound across the different

samples.

MZmine2 also includes some tools for the analysis of the data such as PCA,

clustering and heat maps. It is interesting to notice that when PCA is performed the

user is not required to set anything about preprocessing and scaling of the data. This

have been extensively showed as a critical point for the analysis of metabolomics data

(Berg et al., 2006).

3.2 AMDIS

AMDIS is an acronym for Automated Mass spectral Deconvolution and Identification

System. It is a freely available software with a dedicated GUI. It has been developed at

NIST (National Institute of Standards and Technology), a US government agency for
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the detection of chemicals in violation of chemical weapons conventions. The main core

of this approach is the deconvolution method for the analysis of mass spectra originally

proposed by Stein in 1999 (Stein, 1999). The algorithm involves four sequential steps:

• noise analysis;

• component perception;

• spectral deconvolution

• compound identification.

Only one file at a time can be analyzed and no batch analysis can be performed,

meaning that only a sample at a time can be analyzed.

Data import Different formats can be loaded:

• Bruker

• Finnigan (GCQ, INCOS, and ITDS formats)

• HP

• MassLynx NT

• MicroMass

• Perkin-Elmer

• Shimadzu MS Files

• Varian Saturn Files

• Viking

Data Visualization Once the sample is loaded, the plot of the TIC is visualized in

the main window and selecting a specific scan is possible to look at the corresponding

mass spectrum.
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Settings Before resolving the different mass spectra the user has to define the settings

for the algorithm. Default settings are available for the automatic analysis, but a

careful evaluation is suggested in the AMDIS manual to obtain better results (D’Arcy

and Mallard, 2004). A number of parameters can be adjusted.

Component width A threshold to define the maximum width of a peak.

Omit m/z This option allows to automatically exclude specific m/z ratio(s). Any

m/z values specified will not be considered for defining what constitutes a

chromatographic peak. However, m/z values will be used when the analysis

process extracts a spectrum and so the m/z peak may end up in the extracted

spectrum

Adjacent peak subtraction It can happen that adjacent m/z ratios in a given mass

spectra are related to different compounds. Setting this option to one or two

allows the software to exclude one or two interfering ions. To enable the adjacent

peak subtraction is advisable when the mass spectra are crowded with signals

which could suggest the presence of coeluting compounds. However, the system

could be able to find coeluting compounds even without the Adjacent peak

subtraction.

Resolution Three resolution values can be selected: high, medium, low. The higher

is the resolution the more the algorithm separates adjacent peaks, increasing the

number of compounds detected.

Sensitivity Five sensitivity values can be selected: very high, high, medium, low and

very low. The higher is the sensitivity the more the system considers the signals

from the scans as actual signals instead of noise. For metabolomics experiment

it is advisable to keep it low considering the sub optimal experimental settings

and the complexity of the samples.

Shape requirements This option sets how near the shape of the TIC has to be

similar to a peak to actually consider a given profile as a resolved component.

Three options are available: high, medium, low, the higher is the requirement

the more strict is the requirement the resolved peaks have a peak shape.
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Another set of parameters are called filters. These are categorical information

that the system considers during the analysis of the spectra. Examples are: the

minimum number of m/z to be included in a peak, the minimum threshold for

the signal to noise ratio, the minimum abundance to consider a signal as a peak.

All these parameters have to be manually selected and small differences in the

settings can dramatically change the result of the analysis.

Peak identification As mentioned above the algorithm involves 4 steps.

Noise analysis In the first step a noise analysis is performed in order to extract:

• Noise factor, an estimate of the overall intensity of the noise for the

entire chromatogram

• Threshold transition, an estimation of the values for the measurement

under the limit of detection, arbitrarily set to 0.

• m/z Peak Uniqueness, consisting in the evaluation of the uniqueness of

each m/z.

Component perception The next step consists of the component perception.

A component, i.e. a compound, is perceived when a sufficient magnitude of

its ions maximise together. To assess this trend a number of criteria are

considered inspired by classic theory of chromatography analysis.

Spectral deconvolution Finally, for each of the perceived components a mass

spectrum is deconvolved. The method is based on the original approach

based on least squares estimation proposed by Dromey and colleagues

(Dromey et al., 1976). The intuition of the approach is to find the m/z that

coherently fluctuate up and down and group them together to build the

estimated mass spectrum. For the deconvolution, different thresholds need

to be specified as well as assumptions on the baseline trend and the peak

width, which depend on the parameters selected before the analysis

Identification The identification is finally obtained by comparing the decon-

volved spectra of each identified peak with the NIST library, developed in

the same institution. An estimation of the area under the peaks is obtained
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by building the TIC only with the deconvolved spectra and integrating the

underlying area.

3.3 MS-DIAL 2.0

MS-DIAL was originally proposed for the analysis of LC-MS-MS data (Tsugawa et al.,

2015) but in the version 2.0 also the analysis of GC-MS data has been implemented

(Lai et al., 2018). The software includes a GUI.

Different formats can be loaded:

3.3.1 Data import

• Bruker

• Sciex

• Waters

• Thermo Fischer

• Perkin-Elmer

• Shimadzu MS Files

• Agilent

• .cdf

3.3.2 Quantification and identification

The quantification and identification of the peaks involves the following steps:

Profile smoothing The first step consists in the smoothing of the chromatogram.

Several approaches are available, among them the most recommended are

Savitzky-Golay and linear weighted moving average. Savitzky-Golay is a widely

applied smoothing approach, the smoothing is achieved by fitting adjacent data

points with a polynomial using the linear least squares approach (Savitzky and

Golay, 1964). The user has to set the parameters to perform the smoothing such

as the width of the window for the polynomial.
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Peak spotting The next step is called Peak spotting. Here the user needs to specify

if the data are at high or nominal resolution. If the data are at high resolution,

ranges of m/z are gathered and the Base Peak Chromatogram (BPC) is extracted,

otherwise each m/z is considered obtaining standard EIC. The BPCs or the EICs

are analyzed in order to detect the peaks. The detection of the peaks is based on

the fitting of a Gaussian shape curves. The fit of the curve to the BPC or EIC

is evaluated using different parameters with specific thresholds, such as peak

quality, peak sharpness and threshold that have been defined to discriminate

between good and bad candidate peaks. Subsequently the peaks (called peak

spots by the authors) derived from different m/z ratios with the same width and

the same retention time (but tolerance thresholds for retention time shifts can

be set) are grouped together.

Peak deconvolution For each spotted peak a deconvolution step is performed to

assign the corresponding mass spectra. The deconvolution is based on a least

squares regression model based on the identified peaks. The purpose of the decon-

volution is to estimate the specific peak abundance of m/z traces shared among

coeluting metabolites. This is done through the definition of model peak m/z

traces in the retention time region of each peak group. The deconvolution allows

the detection of the unique spectra of coeluting compounds with a maximum of

four compounds

Peak identification The identification of the peaks can be performed by comparing

the deconvolved spectra with libraries; in the original publication the NIST

library is suggested.

3.4 eRah

eRah is an R package for the quantification and annotation of GC-MS datasets

(Domingo-Almenara et al., 2016). The software does not include a GUI, thus some

knowledge of the R suite is required to use it.

The accepted format for the data is .mzXML. The identification of the peaks involves

five steps:
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Preprocessing The denoising of the raw data is performed using the Savitzky-Golay

method in order to smooth the profiles and filter the baseline signal. The width

of the window for the calculation of the polynomial must be specified by the

user.

Spectral deconvolution The deconvolution is a two step process. First a multi-

variate filter called Compound Match by Local Covariance (CMLC) is applied

to each sample matrix and detects the regions of the chromatogram where the

compounds are eluting. The user has to set the minimum peak width, the

noise threshold and also specific m/z can be excluded. It is worth noting that

the filter looks for regions where the signal has a Gaussian shape, thus not

optimally eluting regions might not be detected. In the second step, once the

peaks have been detected, a deconvolution algorithm is applied to reconstruct

the specific mass spectra. Specifically, the Orthogonal Signal Deconvolution

(OSD) is applied . Intuitively, this method finds the ions that are covaring in

the regions detected in the first step. Finally, the elution profile corresponding

to the reconstructed spectra is calculated. This is done with a least absolute

deviation (LAD) regression (Li and Arce, 2004) between the spectrum found

by OSD-resolved spectra and the chromatogram. These steps are performed for

each sample and for each region of interest.

Alignment The deconvolution is performed independently for each sample at a time,

thus to compare different samples it is needed to identify the peaks that are

describing the same molecule across different samples. Thus, the next step is

the alignment of the deconvolved profiles. This is a local alignment approach;

the algorithm searches the peaks deconvolved in the different samples within

defined windows on the retention time dimension and groups the peaks together

if they are detected as describing the same chemical. Here the user has to set

the maximum allowed time shift and the minimum spectral similarity and both

these parameters can strongly affect the output of this step.

Compound identification In the last step, the aligned peaks are identified by

comparing the mean spectra for a given compound with a spectral library. At
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the same time, an estimation of the relative concentration across the sample for

each compound is calculated by using the deconvolved profiles.

3.5 XCMS

XCMS is an R package proposed in 2006 (Smith et al., 2006). Originally the knowledge

of the R suite was required in order to use the platform, but an online version of XCMS

has been released in 2012 with a dedicated GUI, resolving this obstacle (Tautenhahn

et al., 2012). Originally proposed for LC-MS analysis, nowadays it is also applied for

the analysis of GC-MS data (Arbona et al., 2009; Liu et al., 2014; Ueberschaar et al.,

2021).

Different data formats can be loaded:

3.5.1 Data import

• mzData

• .mzXML

• Agilent

• CDF

3.5.2 Quantification and identification

The quantification and identification of the peaks is performed sample wise, but batch

analysis is possible. The following steps are involved:

Peak detection XCMS works on one sample at a time. The m/z values are grouped

(the span of m/z for the groups is defined by the user) and for each group the

highest ion intensity for each scan is extracted. The result of this step is called

Extracted Ion Base Peak Chromatogram (EIBPC). For each EIBPC, a filter is

applied to detect the presence of peaks. The filter has the shape of a second

derivative Gaussian curve, similar to the filter applied in eRah. The width of

the Gaussian has to be defined by the user, as well as a signal-to noise ratio

threshold. Only the peaks above this threshold are actually considered as peaks.

The noise is defined as the mean signal from the unfiltered data.
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Peak alignment All the peaks detected in all the samples have to be aligned in

order to compare the differences across the different experiments. This is done

by grouping together all the detected peaks, then the system identifies peaks

from different samples that occur at the same retention time. The alignment is

based on two steps. In the first step, an algorithm called PeakDensity, based

on another filter, finds groups of peaks, considering the retention time, across

samples, already aligned. Also in this case the width of the filter must be set by

the user. These groups, called Well Behaved Peaks Groups (WBPGs), are used

as a first reference for the subsequent alignment. The median retention time

and the deviation from the median for each sample is calculated for every group.

Using the median retention time of each WBPG a local alignment is performed

for each sample. The final output of this step is a list of features, i.e. set of

peaks across samples for the same compound. Also here some thresholds are

considered, for instance a peak is discarded if less then 50% of the samples show

a given peak.

Peak Identification In the XCMS platform a dedicated method has been specifically

developed for GC-MS untargeted data, called metaMS (Wehrens, Weingart,

and Mattivi, 2014). The identification of a peak is based on the creation of a

pseudo spectrum that is compared with available libraries. The pseudo spectra

generation is based on the CAMERA package (Kuhl et al., 2012), and it is based

on the clustering of the m/z signals for each of the regions identified in the

peak detection phase. Different filters and thresholds can be applied during the

construction of the pseudo spectra, such as the elimination of peaks with low

intensity, or the elimination of pseudo spectra with few peaks.

3.6 MetAlign

The MetAlign software was proposed in 2009 (Lommen, 2009), and since then numerous

updates have been released. The method was designed both for the analysis of LC

and GC-MS data and, as the author declared, it is an expert system inspired by the

manual analysis of the data performed by expert analysts. It includes a GUI.

Different data formats can be loaded:
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• MassLynx

• Xcalibur

• mzData

• .mzXML

• Agilent

• CDF

The identification and the quantification of the compounds is performed with

different steps:

Preprocessing In the first step, the baseline and the noise are estimated and removed

from the data; nine options need to be selected by the user. The denoising of the

data is based on a filter applied on the mass direction. The baseline correction

is based on a local linear estimation.

Peak detection A peak is defined looking at the preprocessed mass spectra. If two

adjacent scans in a mass trace increase more than a given threshold of local

noise value, going from left to right or from right to left in the mass trace, the

possibility of a mass peak occurring is noted. The software can add other possible

adjacent points participating in the potential mass peak by loosening the local

peak finding criteria (lowering the threshold). All retention times in a mass trace

noted as potential peaks are placed in peak regions, while all points not noted

are placed in baseline regions. The baseline regions are set to zero and the peak

detection is performed for a second time, considering a half of the local noise

value. A final selection of the peaks is performed in order to remove small (noise)

peaks. The threshold for the final selection is based on the noise in the data and

is defined by the user.

Alignment Finally the peaks identified in different samples are aligned. Two algo-

rithms are available called rough and iterative (suggested for crowded datasets).

Different options must be specified by the user also in this case. The aligned

data are used for the final identification and quantification of the compounds.
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3.7 Tools comparison

In the above paragraphs, some of the most common software for the analysis of GC-MS

data have been described. However, several tools are proposed every year, and different

publications are available for an updated review of many other platforms (Spicer et al.,

2017; Misra, 2018; O’Shea and Misra, 2020; Misra, 2021).

Given the number of different options, an important point is which platform should

be selected to perform the analysis of the data.

Myers et al. performed an accurate comparison of XCMS and MZmine2 analyzing

a mixture of standards and human plasma samples (Myers et al., 2017). In the paper

they showed a strong impact of the thresholds for the identification of the peaks

for both the methods. Furthermore, despite the common features detected by both

systems, specific peaks not observed by the other were obtained from each software.

This implies either that the analysis of the data must be performed with more than

one tool to detect all the compounds, or that different false positive and false negative

peaks are detected by both systems. The authors provide a list of suggestions for users

to minimize errors during dataset analysis.

Another comparison of software, particularly focused on the alignment of the peaks,

has been performed by Koh and colleagues (Koh et al., 2010). This is a crucial step in

most of the tools described above, since the correct alignment of the peaks is required

for the comparison of different samples. Also in this case the authors pointed out

the importance of the settings and the impact of several parameters for the good

performances of the analysis. Moreover, they emphasized the risks of misleading results

using tools designed for LC-MS with GC-MS data.

Coble and Fraga (Coble and Fraga, 2014) compared MetAlign, MZmine, SpectCon-

nect, and XCMS for the analysis of both GC and LC-MS data. Also in this case great

discrepancies among the results from the tested software have been highlighted. The

authors suggested the use of multiple platforms for an accurate identification of the

compounds from the experimental data. Moreover, they stressed the point of the large
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Table 3.1 – List of publications comparing software for GC-MS data analysis

Publication Compared software Data

(Myers et al., 2017) XCMS
MZmine2

-Standards mixture - 21 compounds
-Human plasma samples

(Koh et al., 2010)
MetAlign
MZmine
TagFinder

-Standards mixtures
-Bladder cancer and non-bladder
cancer urine samples

(Coble and Fraga, 2014)

MetAlign
MZmine
SpectConnect
XCMS

-Standards mixtures

(Li et al., 2018)

XCMS
MZmine2
MS-Dial
MarkerView
Compound Discoverer

-Standards mixtures
-Black pepper metabolite extracts

(Niu et al., 2014)

XCMS
SpectConnect
MetaboliteDetector
MetAlign
MZmine
TagFinder
MeltDB
Gavin

-Standard mixtures

number of false positive peaks detected by all the systems, suggesting a thoroughly

manual analysis of the results. Other comparison publications are listed in table 3.1.

The comparison of the available tools is definitely important for the researches

looking for methods to analyse the data. Nonetheless, a couple of considerations are

needed. The first is that the analysis of standards mixture is appealing since the results

can be validated and the comparison gives more quantitative indications. However,

it should be noted that the complexity of real data is incomparable with prepared

samples, and nice results with standards mixture do not imply reliable results with

real samples.

A second consideration is about the expertise required to use these software. The

ability and the knowledge of the software is of primary importance for the selection of

the right settings and is not always clear if the authors have the same skills for all the

tested approaches. In this contest, an interesting emerging field is the development of

meta models for the selection of the best parameters during the analysis (Lassen et al.,

2021; Libiseller et al., 2015).
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3.8 Conclusions

All efforts of the researchers for the development of new tools, the comparison of already

existing platforms and the analysis of datasets performed with multiple solutions suggest

that there is still room for improvement and that a general accordance regarding the

best approach for the peak detection identification and quantification is still missing.

At the same time the comparison of the existing tools confirms the need for better

solutions for the analysis of GC-MS data. In particular, the most critical steps are:

• the definition of the settings required to perform the analysis of the data;

• the independent analysis of the samples, which are compared once the information

has been extracted;

The approach proposed in this thesis, described in the next chapters, attempts to

resolve these issues, giving a reliable and fully reproducible list of compounds.
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Chapter 4

Methods

In this section the methods applied during this project are described. The section will

describes with the definition of the notation and the description of bilinear and trilinear

models. The second part describes two alignment approaches for the preprocessing of

chromatographic data. In the last part artificial neural networks, for the classification

of the peak shapes are introduced.

4.1 Notation and terminology

The following notation has been adopted:

• scalars are denoted by italics lowercase symbols. Example: x ;

• one way matrices, i.e., vectors, are denoted by bold lowercase symbols. Example:

x;

• two way matrices are denoted by bold uppercase symbols. Example: X;

• three and higher way arrays are denoted by underlined bold uppercase symbols.

Example: X;

• the number of features of a matrix are denoted by:

– I for the first dimension;

– J for the second dimension;

– K for the third dimension;
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• A model is denoted by the symbol ˆ. For example the model of X is denoted by

X̂;

• the number of components included in a model is denoted by: F ;

• the matrix of residuals is denoted by: E.

4.2 Models

Summarizing, the aim of this project was to develop an automatic approach for the

quantification and identification of molecules from the signals measured by a GC-MS

instrument.

As described in chapter 2, the raw signal measured in GC-MS experiments is actually

the sum of different contributions and the focus is the quantification and identification

of the compounds. Thus, a preliminary step is the estimation of the different sources

and the identification of the interesting signals, i.e., the peaks.

The tools described in chapter 3 are based on extensive preprocessing and semi-

manual analysis of the experimental data, in order to highlight the peaks that are

describing chemical compounds. In short, the strategies can be described as a heuristic

approach, combining different criteria and methods for the extraction of the molecular

signals.

Another possible way to extract the single contributions from complex mixtures

is to build a model to describe the data. In this sense a model is defined as an

approximation of the data (Bro, 1998). In general a model is defined by:

• structure

• parameters;

• constraint(s);

• loss function.

The core of the AutoDise algorithm, developed in this thesis, is based on a model

called PARAFAC2. In the first part of the following section the concept of model and
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some of the related aspects are described, in the second part a brief introduction to

the theory behind deep neural networks is given. In the last part, the classification

metrics applied during this project are introduced.

4.2.1 PCA

A Principal Component Analysis (PCA) model can be used as an example to introduce

the concept of model. A matrix X with dimensions I xJ is approximated by a matrix

X̂, i.e., a PCA model, with dimensions I xJ . The structure of X̂ can be defined as:

X̂ = ABT (4.1)

where A has dimension I x F and B has dimension J x F and T indicates the

transpose. The matrices A and B hold the parameters of the PCA model and are

called scores and loadings, respectively. The number of columns F in A and B is

usually much lower than the original number of variables in X, suggesting that A and

B give a compressed representation of X. Each pair of f variables in A and B is called

Principal Component, or component. The number of components to be included in

a PCA model should be enough to extract all the relevant information filtering out

uninteresting variation such as the noise. Since X̂ is a description of X, the following

relation can be formalized:

X = X̂ + E (4.2)

where E is the residual matrix with size I xJ that holds the unexplained part of X

in X̂.

A PCA model is bilinear and an alternative, yet equivalent, notation, useful to introduce

this concept, is:

x̂ij = ai1bj1 + · · ·+ aiF bjF ; i = 1, · · · , I; j = 1, · · · , J ; (4.3)

which is equal to:

X̂ =

F∑
f=1

afb
T
f (4.4)
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where af and bf are the fth column vectors of A and B. As it can be seen from

equation 4.3; x̂ij is both linear in ai1,· · · ,aiF fixing bj1,· · · ,bjF and in bj1,· · · ,bjF fixing

ai1,· · · ,aiF (Kruskal, 1983). At the same time it implies that the main assumption is

that the experimental signal can be described by a linear model and this assumption is,

at least theoretically, met for GC-MS data (Booksh and Kowalski, 1994). The concept

of linearity can be extended to trilinearity and more, meaning that linear models can

be defined also for data with more than two dimensions. All the models described in

this section are bi or trilinear. From equation 4.4 a PCA model X̂ can be seen as the

outer product of the matrices A and B.

The columns of A and B are subject to the orthogonality constraint. Constraint(s) are

imposed to a model to ensure specific properties or according to a priori knowledge.

The orthogonality costraint determines that each component is ’blind’ to the others,

i.e., each component is explaining a specific part of the data and the same part is not

explained by any other component. The orthogonality constraint is imposed on the

loadings and the scores and it can be formalized as:

ATA = D; BTB = I (4.5)

where D is a diagonal matrix and I is an identity matrix due to the fact that the

vectors in B are normalized.

The loss function is another fundamental aspect of a model; it defines how well

the model approximates the data and also is used as cost function to estimate the

parameters of the model. For a PCA model, the loss function can be formalized as:

min ||E||2F ; where E = X−ABT (4.6)

where || ||F is the Frobenius norm of a matrix, i.e., the square root of the sum of

the squares of the entries in equation 4.6. There are different algorithms to calculate

the parameters in A and B for a PCA model, and nowadays the most applied is

the singular value decomposition (Golub and Kahan, 1965). However, it is worth

introducing another approach for calculating PCA, which is applied also to all the

models described in this section. This approach is called Alternative Least Squares
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(ALS) algorithm. A generic ALS algorithm estimates A and B to minimize the loss

function in equation 4.6, with a multi step approach. The basic idea is to estimate, in

a least square sense, B using a tentative initialization of A. This can be formalized as

follow:

B = X(A+)T (4.7)

where A+ is the Moore-Penrose inverse of A.

The estimation of B can be used to estimate A and so on, with an iterative

approach until convergence. (Young, Takane, and Leeuw, 1978).

The basic principle of the unconstrained ALS can be outlined as follow:

1. initialize Af ;

2. solve B = X(A+)T ;

3. solve A = X(B+)T ;

4. iterate through 2. and 3. until convergence;

The convergence of ALS has been demonstrated in De Leeuw, Young, and Takane,

1976. The convergence of the algorithm can be measured by comparing two consecutive

iterations; when the difference in terms of fit is below a given threshold the convergence

is reached.

One advantage of the ALS algorithm is the possibility to easily include constraints.

For PCA models, an example of ALS based algorithm is the Non Iterative PArtial

Least Squares (NIPALS) (Wold, 1975). This variation of the ALS alghorithm serves

to impose the orthogonality constraint to the PCA model.

The orthogonality constraint is useful in a number of situations, but for the analysis

of GC-MS data it can be problematic.

Considering the results from a GC-MS experiment for a single sample, the rows of

the matrix hold the scans, i.e., the elution time, while the columns correspond to the

measured mass spectra within the selected m/z ratios.

Keeping in mind the purpose of resolving pure signals of the different compounds in
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Figure 4.1 – A graphical example showing the solutions by a PCA model on GC-MS
data.
A: Total signal from the GC-MS experiment. The TIC (black curves), the 3D raw data
(grey surface), and the m/z (black lines) are shown
B: The same signal is decomposed in the individual contributions showing that two
compounds are eluting at the same time.
C: Score plot of 2 components PCA model.
D: Loadings from the two components PCA model.

the raw data, the scores and loadings should be organized as follows. Each column

vector of the scores of a PCA model would hold the total intensity of signal for each

scan for a given compound. It can be seen as the specific TIC for the corresponding

compound described by a given component. Each column vector from the loadings

would hold the specific mass spectra for a specific compound. The scores and the

loadings can be subsequently used to quantify and identify the resolved chemical

signals, integrating the area under the peaks and comparing the resolved spectra with

libraries, respectively.

Nonetheless, the orthogonality constraint imposes that each resolved signal is orthogonal

to each other, meaning that overlapping signals cannot be properly resolved.

In figure 4.1 the loadings and the scores from a PCA two components model built on

GC-MS data are shown. The number of components is consistent with the chemical

rank, thus it should be sufficient to optimally describe the data represented in figure
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4.1.A. It is possible to notice that the scores from PC1 describe the mean TIC shape,

while the scores from PC2 are characterized by a first derivative shape, due to the

orthogonality constraint, addressing for the shift due to the coelution of the two

compounds. This is a typical shape for PCA components describing shifted data

(Malmquist and Danielsson, 1994; Wülfert, Kok, and Smilde, 1998; Stoyanova and

Brown, 2001), limiting the interpretability and chemical usefulness of PCA for the

analysis of raw GC-MS data. Also looking the loadings, describing the mass spectra,

the second PC fails in the extraction of chemical information, showing negative signals

which are not present in the experimental spectra. In general, it is possible to obtain

overlapping signals in untargeted metabolomics, thus imposing this constraint does

not allow a proper representation of the data, making the PCA model not suitable for

the analysis of GC-MS data.

4.2.2 MCR

Multivariate curve resolution (MCR) is another modeling approach. A MCR model

decomposes a matrix X into a set of two smaller matrices C and S holding the

concentration profile and the pure spectra, similarly to PCA. A MCR model can be

formalized as follow:

X̂ = CST . (4.8)

where X̂, with dimension IxJ , is the MCR model, C, with dimensions IxF , is the

matrix holding the concentration profiles (scores) and S, with dimensions JxF , is the

matrix holding the pure spectra (loadings).

The main difference between PCA and MCR is that the orthogonality constraint is not

imposed to the model. This is relevant because it implies that the signals described

by the model can be overlapped, thus allowing a more pertinent representation of the

original data.

In the context of the analysis of GC-MS data, the aim of applying a modelling approach

is that each component describes a specific contribution, thus for each contribution

a component should be included. This is called chemical rank (Smilde, Bro, and

Geladi, 2005). For instance supposing that the data in a matrix holds the signals

made of the contributions from two chemical compounds, the chemical rank of the
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matrix is two, and a model including two components should extract all the relevant

chemical variation, filtering out the irrelevant contributions such as the experimental

noise. Thus, the number of components F included in the model should be related to

the chemical rank of the original data. The same relation as in equation 4.2 can be

assumed also for a MCR model. Hence, as for PCA, the number of F columns in C

and S is much lower than J .

The ALS algorithm can be used to find the parameters of the model in C and S

(de2009two). During the calculation of a MCR model each the f column in C and S

are calculated at the same time, as such MCR is a non nested model. It means that

the F − 1 components model is not a subset of the F components model, thus the

shape and the variance explained by the components can change when the number

of components included changes. The algorithm can be formalized as follows (Tauler,

1995):

1. Initialize C;

2. Solve S = X(C+)T ;

3. Solve C = X(S+)T ;

4. Iterate through 2. and 3. until convergence.

Different strategies for the initialization can be used, details on this aspect and in

general about the algorithmic side can be found in (Tauler, 1995; De Juan and Tauler,

2006). Not imposing the orthogonality constraint, the components can effectively

describe the specific contributions in a signal, as shown in figure 4.2, where a two

components MCR model is represented. The number of components is consistent with

the chemical rank of the data in 4.2.A, and the MCR model extracts the same profiles

as in 4.2.B. Looking the scores in 4.2.C, Component 1 describes Compound 1, and

Component 2 describes Compound 2. Finally, comparing the deconvolved spectra in

4.2.D with the real spectra in 4.2.B, no significant differences can be noticed.

Due to its effectiveness, MCR has been widely applied for the resolution of complex

mixtures (De Juan, Jaumot, and Tauler, 2014).
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Figure 4.2 – A graphical example to show the solutions by a MCR model on GC-MS
data (same as figure 4.1). A: Total signal from the GC-MS experiment. The TIC (black
curves), the 3D raw data (grey surface), and the m/z (black lines) are shown
B: The same signal is decomposed in the individual contributions revealing two compounds
are eluting at the same time.
C: Scores plot of 2 components MCR model. D: Loadings from the two components MCR
model.

However, despite the effectiveness of the MCR model to resolve signals, there are

some aspects that are worth noting.

The first one is that MCR can be applied only on two way datasets. When more

than one sample is analyzed with GC-MS, the resulting data is actually three way.

When a GC-MS experiment is performed, a matrix with dimensions IxJ is obtained

for each sample. When K samples are analyzed, the resulting three way matrix X

has IxJxK structure. Thus, before to apply MCR the X matrix must be unfolded

(Garreta-Lara et al., 2016), leading to a huge increase of the matrix dimensions as

shown in figure 4.3.

Another more important point to be considered is that, when applying MCR, the

solution is not unique, due to the so called rotation ambiguity (Abdollahi and Tauler,

2011; Olivieri, 2021). Rotation ambiguity can be formalized as follows:

X̂ = CT−1TST (4.9)
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Figure 4.3 – Unfolding of a three-way matrix into a two-way matrix.

where T (FxF ) is a non-singular matrix. Basically equation 4.9 shows that any

rotation of the matrices C and S by means of T will produce the same solution, thus

an infinite number of solutions with same fit can be obtained. It means that MCR can

find the ’true’ solution, i.e., the combination of parameters that actually describes the

physical phenomena in the data. However, these parameters have to be find in a set of

infinite combinations that describe the data equally well but not extracting the real

contributions.

This issue, well known since when the method was proposed (Lawton and Sylvestre,

1971), can be tackled by imposing constraints to the model, thus reducing the number

of feasible solutions (Abdollahi and Tauler, 2011). Another possible way is to take

advantage of the three way data structure from GC-MS experiments.

4.2.3 PARAFAC

In 1944, Cattel proposed the principle of parallel proportional profiles (PPP) summa-

rized as follows by himself in a later publication:

The basic assumption is that, if a factor corresponds to some real organic
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unity, then from one study to another it will retain its pattern, simultane-

ously raising or lowering all its loadings according to the magnitude of the

role of that factor under the different experimental conditions of the second

study. No inorganic factor a mere mathematical abstraction, would behave

this way . . . This principle suggests that every factor analytic investigation

should be carried out on at least two samples, under conditions differing in

the extent to which the same psychological factors .. might be expected to

be involved. We could then anticipate finding “true” factors by locating the

unique rotational position (simultaneously in both studies) in which each

factor in the first study is found to have loadings which are proportional to

(or some simple function of) those in the second: that is to say, a position

should be discoverable in which the factor in the second study will have a

pattern which is the same as the first, but stepped up or down. (Cattell

and Cattell, 1955) Author italic”

A way to show the basic idea behind this principle is given in (Bro, 1998), and

reported here.

A matrix X1 can be decomposed in two matrices A and B. Supposing that A and B

have two columns, the following relation can be formalized:

X1 = a1b
T
1 c11 + a2b

T
2 c12 (4.10)

where c11 and c12 are equal to one. Another matrix X2 can be decomposed with the

same parameters in A and B but with different proportions:

X2 = a1b
T
1 c21 + a2b

T
2 c22 (4.11)

where c21 and c22 are not equal to c11 and c12. This example summarises the idea

behind the Parallel Proportional Profiling (PPP). Moreover, Cattel shown that the

presence of parallel profiles would led to unambiguous decomposition. It implies that,

if a model is based on PPP, it is not possible to rotate the model and obtain the same

fit, resolving the rotation ambiguity that affects two way models, such as MCR.

Starting from Cattels’ intuition, Harshman developed the PARAllel FACtor analysis
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Figure 4.4 – Graphical representation of a PARAFAC model.

model (PARAFAC) (HARSHMAN, 1970).

The PARAFAC model is strictly related to the previous example and its structure

is depicted in figure 4.4. Different equivalent notations can describe a PARAFAC

model, the matrix sample-wise notation being among the most common ones:

Xk = ADkB
T + Ek (4.12)

where E accounts for the unexplained variation in Xk; that is the k-th slab in

X and Dk is a diagonal matrix holding the kth row of C in its diagonal. The outer

product notation for PARAFAC can be expressed as:

xijk =

F∑
f=1

aifbjfckf + eijk; (4.13)

it can be seen from 4.13 that across the K samples the parameters in A and B are

the same for all the samples, while the differences in terms of magnitude are given by

the values in Dk.

ALS can be used to calculate a PARAFAC model (Bro, 1998). The optimization

problem is defined using the Kathri-Rao product notation and each loading matrix

is estimated using the other two. PARAFAC is a non nested model and all the

components are calculated at the same time during the fitting of the model. Details

about the algorithm are given in Bro, 1998.

When a PARAFAC model is calculated on a three way matrix, where the elution

time, the masses and the samples are in the first, second and third mode respectively,
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Figure 4.5 – A graphical example to show the solutions by a MCR model on GC-MS
data (same as figure 4.1 and 4.2). A: Total signal from the GC-MS experiment. The TIC
(black curves), the 3D raw data (grey surface), and the m/z (black lines) are shown
B: The same signal is decomposed in the individual contributions revealing two compounds
are eluting at the same time.
C: Concentration profiles of 10 samples for the two compounds, in red the concentration
profile for compound 1 in blue for compound 2.
D, E, F: Loadings from a 2 components PARAFAC model on the first second and third
mode respectively. Notice the similarity of the loadings with the actual contributions in
B and C

each column in A, B and C will describe the elution profiles, the mass spectra and

the relative concentration of the samples, as shown in figure 4.5. By convention, the

first two modes are called loadings and the third is called scores matrix. It means

that, at least in principle, the individual contributions in a combination of signals can

be resolved. Moreover, due to the uniqueness property, a PARAFAC model would

decompose the data extracting the true contributions.

However, the data must fulfill some conditions in order to obtain a unique

PARAFAC model. First, the dataset must contains at least two samples with inde-

pendent variations in the concentration for a given compound. It means that just

two replicates of the same sample can not be used, but at the same time it is worth

to note that, when, among samples, some compounds have different concentrations

while others do not, it is still possible to find the unique patterns for the freely varying

compounds (Kiers and Smilde, 1995).

Another important point to ensure the uniqueness of a PARAFAC model is that the
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right number of components is included in the model. Proofs and generalization of the

uniqueness for a PARAFAC model in relation with the number of components have

been discussed in different publications, nonetheless a feasible analytical method for

the estimation of the right number of components is not available and a number of

publications are devoted to the study of this property (Ten Berge and Sidiropoulos,

2002; Rajkó et al., 2017; Giordani, Rocci, and Bove, 2020).

In practice, the assessment of a PARAFAC model is performed by visually in-

specting the results and using diagnostic tools on the calculated model. The two

most common are the split half analysis (Harshman and Lundy, 1984) and the CORe

CONsistency DIAgonstic (CORCONDIA) (Bro and Kiers, 2003).

Split half analysis consists in the repeated fitting of the same PARAFAC model consid-

ering only a fraction of samples. The main idea is to see if the same model, considering

different subsets of samples, can be obtained. If this is the case, it can be considered

as an evidence that the estimated components are reflecting true phenomena. Split

half analysis is a powerful technique, but it is also time demanding.

CORCONDIA is very effective for the determination of cases where too many fac-

tors have been included in the model (Bro and Kiers, 2003). CORCONDIA estimates

the appropriateness of a PARAFAC model by measuring if the variation explained

by the model is low-rank trilinear, in other words if the components are explaining

independent variation. For instance, if the samples consist of four chemical compounds

and they are modelled with a five components PARAFAC model, the model is forced

to divide the signals of the four compounds in five components, thus the components

will not be independent to each other and the described variation is not low-rank

trilinear. In these cases CORCONDIA will be low.

Another fundamental assumption for PARAFAC can be observed directly from

equation 4.12. It is possible to notice that the F columns in A and B are equal for all

the K samples. This means that the PARAFAC model assumes that the contribution

of a specific factor is equal across all the samples. Theoretically, GC-MS data can be

seen as a trilinear structure, thus satisfying the PARAFAC assumption. Nonetheless,
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this is not always true with experimental data, due to two main problems: the shift

in retention time for a given compound between samples, as well as changes in peak

shape, again considering different samples. The deviations from trilinearity in GC-MS

data mainly arise from the elution profiles, while the mass spectra obtained with EI

in low resolution are more stable across the samples. However, problems can arise

when the mass spectrometer detector is saturated and deviations from linearity can be

observed also in the mass mode (Ausloos et al., 1999; DeJong et al., 2016).

These observations highlight the limits of PARAFAC to model GC-MS data. To

overcome these limitations, data can be either aligned or unfolded and analyzed by

means of MCR, loosing the uniqueness property of PARAFAC. Another option is

to apply another modeling approach, able to handle the time shifts and the shape

changes.

4.2.4 PARAFAC2

PARAFAC2, proposed by Harshman (Harshman et al., 1972), is related to the

PARAFAC model and equation 4.12 can be used to introduce the model. PARAFAC2

can deal with shifting modes replacing the B matrix with a set of Bk matrices. Thus

the model can be rewritten as:

Xk = ADkB
T
k + Ek (4.14)

where Bk has dimension JxF . Intuitively, as it is written in equation 4.14, the

model is not consistent with the the principle of parallel proportional profiles, since it

requires that the profiles are consistent between different samples. If this condition is

not satisfied, then the model would lose the uniqueness property. To maintain this

property, Harsman imposed the following constraint:

BT
kBk = H, with k = 1, . . . ,K (4.15)

where H, is a FxF matrix invariant across the k slabs. For 4.15 to hold each Bk

is decomposed as:



56 Chapter 4. Methods

Figure 4.6 – Graphical representation of a PARAFAC2 model.

Bk = PkH, for k = 1, . . . ,K

PT
kPk = I

(4.16)

where Pk is a JxF matrix and I is a FxF identity matrix, suggesting that Pk is

an orthonormal matrix, i.e., normalized orthogonal matrix. With these constraints

the model is unique under mild conditions (Berge and Kiers, 1996). A graphical

interpretation of the model and an example to show the differences between PARAFAC

and PARAFAC2 are given in figures 4.6 and 4.7, respectively. In 4.7.B, 4.7.C and

4.7.D it possible to notice that the components from a PARAFAC model cannot

effectively describe the data shown in 4.7.A, due to the shifts and shape changes across

the samples. Instead, a PARAFAC2 model can handle the shift, resulting in a clear

description of the data, as shown in figure 4.7.A. In figure 4.7.E resulting TIC from

the components obtained with PARAFAC2 are represented and it is possible to notice

that the specific contributions have been effectively separated.

As for PARAFAC, the uniqueness is obtained when the right number of components

is included in a PARAFAC2 model. Also in this case the concept of chemical rank

is important. A visual inspection of the model was one of the main way to asses

the right number of components together with the analysis of fit of the model, the

number of iterations etc.. However, more sophisticated tools have been developed to

assist the selection of the models with the right number of components. For instance,

CORCONDIA has been adapted for PARAFAC2 (Kamstrup-Nielsen, Johnsen, and

Bro, 2013), and also for this model proved to be a valuable tool.
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Figure 4.7 – A) Raw data extracted from the dataset in Ballabio et al., 2008. The visual
inspection of the TIC suggests that a 3 components model would separate all the relevant
chemical information: two coeluting compounds and the baseline.
B), C), D) first second and third mode loadings from a PARAFAC (PF1) model.
F), G), H) first second and third mode loadings from a PARAFAC2 (PF2) model.

Another tool is a Partial Least Squares - Discriminant Analysis model developed to

identify models with the right number of components (Johnsen et al., 2014). The PLS-

DA model was trained on diagnostic values estimated directly from the PARAFAC2

models, showing good performances.

Also for PARAFAC2 it is possible to impose constraints on the loadings and

recently a modification of the original ALS-PARAFAC2 has been proposed to impose

non negativity on all the three modes (Cohen and Bro, 2018). This flexible version of

PARAFAC2 is important for two reasons:

1. the experimental data are always non negative, thus the models will fit the data

in a more appropriate way;

2. it has been shown that the constraint reduces the number of local minima, thus

reducing the uncertainty of the estimated models (Cohen and Bro, 2018; Yu and

Bro, 2021).

4.2.5 PARAFAC2 for GC-MS data: approach and drawbacks

Given that a PARAFAC2 model can handle temporal shifts, it is a preferable modelling

approach compared to PARAFAC, since no or minor preprocessing is required for
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modeling GC-MS data (Amigo, Skov, and Bro, 2010). PARAFAC2 has been successfully

applied for the analysis of GC-MS data; Yuille et al., 2018; Sales et al., 2019; Laursen

et al., 2020 are an example of some of the most recent applications. The release

of the PARADISe platform (Johnsen et al., 2017) has been a major breakthrough

for the use of PARAFAC2. This is a GUI that removed the need of line coding for

PARAFAC2 modeling. Given the uniqueness of the solutions, the possibility to handle

chromatographic issues such as shifted peaks and the number of pubblications where

it has been successfully applied, PARAFAC2 has been identified as the best available

option for AutoDise system to resolve the specific contributions in the experimental

GC-MS data.

In practice, some steps are required to apply PARAFAC2 and PARADISe is the

first platform with a dedicated GUI to easily handle them. The steps are:

Interval definition PARAFAC2 models are calculated on specific regions defined

on the elution time dimension of GC-MS data, called intervals. Usually the

definition of the intervals is performed manually. Practically, if the aim is to

resolve all the compounds, each peak in the data must be included in at least

one interval. Usually a good practice is to define small intervals including a

limited number of peaks, ideally one at a time. A properly defined interval should

include a whole peak, crucial for an accurate quantification of the compound.

With complex datasets, where the number of compounds is up to thousands, this

step can be time consuming. Moreover, the peaks hidden in the baseline could be

undetected by the user. Furthermore, in real metabolomics GC-MS experiments,

coelution of compounds is extremely frequent and often it is not clear where to

put the limits of the intervals. This can be solved later by analyzing the models

and defining new intervals, but a thorough and time consuming analysis of the

models is required.

Models calculation Once the intervals are defined, the PARAFAC2 models are

calculated. As described before, the user has to set the number of components

included in each model. However, tools for a reliable assessment of the number

of components to be included in the models before the calculation have not

been yet proposed. The common approach is to calculate a set of models with
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different number of components, and then the best solution is selected by visually

inspecting the obtained results. The range of components included depends on

the intervals. If the criteria to include a small number of peaks in each interval

is adopted, a small chemical rank can be assumed and usually no more than 10

components are needed to obtain appropriate solutions.

Components selection The final step is the selection of the components to be

included in the peak table, where for each sample the relative concentration

of the resolved compounds is reported together with a tentative identification,

obtained with the comparison of the resolved mass spectra with spectral libraries

such as NIST14.

This is performed by visually inspecting the models and extracting the interesting

components, i.e., the components that are describing the peaks. To assist the

researchers during this phase, in Johnsen et al., 2014 and Risum and Bro, 2019

two effective tools have been proposed and described. In the first paper a PLS-DA

model was developed to identify the appropriate models in terms of number of

components.

In the second, a Convolutional Neural Network has been proposed to identify the

components that are describing the peak. The network is able to label the elution

profiles according to their shape. When the network is applied on the signals

resolved by PARAFAC2, it can reduce the number of models to be analyzed by

selecting only those where the peaks are described.

Nevertheless, these tools do not exclude the visual analysis of models, although

their use is of great help during this step. The main point during this step is to

extract and include in the peak table each of the resolved peaks only a single

time, otherwise redundant compounds will be present. When PARAFAC2 is

applied on complex GC-MS data, it is common to have overlapping intervals,

thus models from different intervals can describe the same compound. The

tools described above, when applied on PARAFAC2 solutions, do not select

the components to be included in the peak table. The PLS-DA model give a

list of models, and for each model the components describing the peaks have

to be manually selected. The convolutional neural network provides a list of
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components that are describing the peak. However, in both the cases, it is likely

that some models/components are describing the same chemical compounds,

thus the final selection is left to the user. The selection of the components is

time consuming and can lead to biased and redundant peak table. Once the

components have been selected, the relative quantification can be performed

directly by the model, while the identification is performed by comparing the

resolved spectra of the selected components with spectral libraries.

AutoDise, the algorithm developed during this PhD, described in chapter 5 of

this thesis, aims to automatically handle these steps, reducing the analysis time and

producing a comprehensive and non redundant peak table, with no actions required to

the user.

4.3 Peak alignment

PARAFAC2 can handle time shifts in the data as well as baseline drifts. Therefore,

GC-MS data do not need to be preprocessed before calculating a model. Nonetheless,

for practical reasons, it can be useful to align the data, considering the elution time

dimension. This is important during the definition of the intervals. If several samples

are analyzed and the resulting data are affected by severe time shifts the definition of

the limits of the intervals can be extremely complicated. For instance, peaks describing

different molecules could be included in the same interval, while peaks referring to

the same compound can be split in different intervals. These issues can be detected

afterward during the visual inspection of the models. Nonetheless, a even non perfect

alignment of the data can be extremely useful in terms of time saving both in the

interval definition step and in the visual inspection of the models. Here two effective

alignment approaches are briefly described: CoShift and COW.

4.3.1 CoShift

CoShift has been proposed by van den Berg and colleagues in (Engelsen, Belton, and

Jakobsen, 2005). This is a rigid alignment algorithm, the idea is to horizontally shift a

chromatogram to maximise the correlation with a reference profile.

The reference is of course important to obtain good performances, and it must be as
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generic as possible so to have with all the samples some common peaks. In Skov et al.,

2006, four methods have been suggested to select the reference, but the final choice is

left to the user. The types of references are:

• the mean of the signals;

• the median of the signals;

• the bi-weighted mean of the signals;

• the maximum of the signals;

• the maximum cumulative product of correlation coefficients.

The mean, the median and the bi-weighted mean are similar to each other, overall

the references produced by these approaches are characterised by wider peaks than

in the raw data, particularly for the mean reference, while using the median usually

the peaks are narrower. Using the bi-weighted mean, the outliers are down weighted

in the calculation of the mean, the resulting reference is an average between the two

others. The maximum signal is defined by the maximum values at each elution time

across all the samples, this option is rarely applied. The maximum cumulative product

of correlation coefficients instead selects a real chromatogram among those in data, in

particular the profile from the sample with the highest correlation with all the others

is selected.

Intuitively, this last option is particularly suited for this approach. The step size to

find the maximum correlation is limited by a defined threshold, to avoid the alignment

of peaks unrelated to each other.

4.3.2 COW

COW stands for Correlated Optimized Warping (Tomasi, Van Den Berg, and Anders-

son, 2004). The main idea is to align all chromatograms in a batch towards a reference

chromatogram, one chromatogram at a time. The reference is of crucial importance

to obtain an effective alignment. The same options mean, median, bi-weighted mean,

maximum intensity and the maximum correlation, described for CoShift can be also

applied to define a reference for COW.
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Once the reference is defined, the reference and the chromatogram profiles are

divided into intervals which are to be aligned. The intervals can vary, so they can

be enlarged or shrunk according to a threshold of flexibility defined by the slack size

parameter, which indicates the maximum length change. Afterwards, all possible

combinations of segment sizes are tested. The combination of segment size, which

results in the best alignment accordingly to the defined slack sizes, is chosen. If

the segment of the chromatogram to be aligned has a different size compared to the

corresponding segment in the reference, it is linearly interpolated to fit the size in the

reference.

The length of the intervals and the slack size are crucial to obtain the best align-

ment, ensuring at the same time enough flexibility to correct the shifts, but avoiding

any changes in peak shape’. Skov and colleagues (Skov et al., 2006) have proposed an

automated way to optimize these parameters.

The optimisation tests combinations of different slack and segment sizes, within a

defined range, with a simplex based approach to find the optimal parameters. The

optimal parameters are defined by means of two criteria, used to assess the goodness

of the alignment: simplicity and peak factor.

The simplicity value is the fourth power of the first singular values of the aligned

chromatogram. The more the simplicity is close to one the less the different profiles

are shifted, thus indicating that the profiles have been aligned.

The peak factor is based on the difference in the Euclidean norm of the sample chro-

matograms before and after the alignment. If the norm of the chromatographic profile

changes after the alignment, as a result of the interpolation, it will influence the

area under the peak. Thus the peak factor is important to verify if the peak shapes

are preserved. Through the automatic optimisation, the amount of manual work to

align chromatograms is extremely limited, nonetheless the optimisation step requires a

significant amount of time.

CoShift is more suited to align chromatographic profiles with major shifts, instead

when the shifts are limited and there is no need to introduce too much flexibility, which

can dramatically affect the shape of the peaks, COW is the preferable option. Thus,
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the two approaches can be combined: in a first round CoShift is applied to correct

the biggest shifts, then COW solves the remaining (minor) issues. Solving the major

shifts with CoShift is an advantage because COW would need too much flexibility, if

the shifts are severe, destroying the shape of the peaks.

4.4 Artificial neural networks

Artificial neural networks (ANN) are a machine learning approach roughly inspired by

how neurons in a human brain work. In the recent years, the application of neural

networks has increased thanks to the huge availability of data and fast improving in

computing capacity.

In this thesis, two types of ANN have been tested: Recurrent Neural Network

(RNN) and Convolutional Neural Network (CNN). Shortly some concepts will be

introduced by describing the basics of ANN and then details will be given on RNN and

CNN. These methods are a crucial elements for the AutoDise system. In particular,

they have been applied to identify the PARAFAC2 components that describe the peaks

in the data. As described in chapter 3 common approaches for the identification of the

peaks are based on Gaussian filters applied on the chromatographic profiles. However,

most of the times chromatographic peaks are not characterized by Gaussian shapes.

Moreover, these approaches require to set parameters such as the width of the filter,

which can dramatically affect the output. ANN approaches have been successfully

applied in Risum and Bro, 2019 in this context, and the trained model has been

implemented in AutoDise. However, during this project other networks have been

trained, in order to test different strategies and eventually improve the labelling results.

Details about the trained models are given in chapter 5, here a brief overview of the

theory at the basis of these approaches is given.

4.4.1 Artificial Neural Network

An ANN can be defined as a function optimized to map an input x to a label y

(Goodfellow, Bengio, and Courville, 2016). The function is usually described using
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Figure 4.8 – Graphical representation of a ANN. The edges width and opacity is
proportional to the respective weights. The different colours of the output layer represent
four different classes.

neurons and weights.

In each neuron of an ANN there are inputs and one output. The relation between

the inputs and the output can be formalized as follow:

y = f(w1x1 + · · ·+ wjxj + · · ·+ wJxJ + n) (4.17)

where y is the output, w is the weight associated to the j th input xj , f() is the

activation function and n is called bias, which is a threshold that influences the final

output. In general, the greater is the bias of a given neuron the most likely the output

of a neuron will be high in value. Different types of activation functions can be used,

among the most applied are the sigmoid function, the ReLu function, and the tanh

function (Sharma, Sharma, and Athaiya, 2017).

The neurons are organized in layers, the first layer is called input layer, the last layer

is called output layer and all the layers in between are called hidden layers. If there is

more than one hidden layer, then the network is called Deep Neural Network. In figure

4.8 a graphical representation of an ANN is shown. In the input layer, the sample

features are fed into the network. The number of neurons in this layer depends on the

number of features of the samples. If the samples have J variables, the number of
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neurons in this layer will be J .

All the neurons in the input layer are connected with all the neurons in the first hidden

layer. In the same way, all the neurons in the first layer are connected with all the

neurons in the second layer, and so on. Connected means that the output of the

previous neuron is transferred to the next one, so it is the input of the neurons of the

subsequent layer. Then, all the information fed in each neuron is transformed as in

equation 4.17 . Considering the layer structure of an ANN, 4.17 can be rearranged

layer wise:

y(l) = f(W(l)x(l−1) + n(l)) (4.18)

where l is the layer number, y is the vector of the outputs for the lth layer with

dimension (1xn), where n is the number of neurons in the lth layer, f is the activation

function, W is the matrix of the weights with dimensions (kxn), where k is the number

of inputs, x(l−1) is the vector holding the outputs from the previous layer and n is the

vector holding the biases of the neurons in the lth layer.

The last layer of neurons, called output layer, comprises as many neurons as the

number of classes. Each neuron in this layer produces an output as the neurons in

the hidden layers. A softmax operator is applied to the outputs. This is a function

providing a normalized probability distribution over the possible classes defined as:

ŷ =
ex

(l−1)∑K
k=1 e

x
(l−1)
k

(4.19)

where ŷ is the output of the softmax operator, x is the output from the previous

layer and K is the number of classes. ŷ can be considered as the normalized probability

distribution consisting of K probabilities for each sample.

The goal is to optimize the biases and the weights in the network so to minimize the

cross entropy between the true distribution given in the training data and the predicted

one. During the training, the data are fed into the network and the optimal biases and

weights are estimated. This is performed by means of gradient descent algorithms, such

as Stochastics Gradient Descent (SGD), Root Mean Squared Propagation (RMSProp)

and Adaptive Movement Estimation (Adam). The parameters are optimized calculating
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the gradient of the loss function by using the back-propagation algorithms; details

about the algorithm can be found in Ruder, 2016.

4.4.2 Recurrent neural network

Recurrent Neural Networks (RNN) are a type of ANN specifically designed for sequential

data, i.e., time series organized in a vector, with length I , where each element is a

part of the sequence (Goodfellow, Bengio, and Courville, 2016). The core of RNN

neural network is called ’cell’. A cell can be seen as a neuron with an internal loop.

The internal loop allows the cell to keep the information from the previous input with

the next input, which is the following element in the input vector. Thus, in a RNN

each cell is fed with the whole sequence differently from ANN. The information from

the previous time step is stored in the so called hidden state, which is the key to

successfully classify sequential information. The hidden state can be formalized as:

ht = tanh(Wht−1 + Wxt) (4.20)

where ht is the hidden state for x at the time t , W is the matrix of the weights, and

ht−1 is the hidden state from the previous iteration considering xt−1 . From equation

4.20 it is possible to notice that the weights in W are the same for all the inputs, thus

during the training the weights will be optimized considering the whole sequence. The

output from the last iteration can be used to get the final classification.

The problem with shallow RNN is that the training, which is based on the calculation

of the gradient of the loss function, can suffer from the so called vanishing gradient

problem (Hochreiter, 1998). As described above, in each cell of a RNN there are as

many layers as the length of the sequence. Because of the transformations of the tanh

activation functions, during the training the gradient of the loss function, calculated

by means of back propagation algorithm, can tend to zero, blocking the training of

the model .

Long Short Term Memory cells have been introduced in 1997 (Hochreiter and

Schmidhuber, 1997) to overcome this problem. There are four gates in LSTM cells,

usually called i , f , o, g ; these gates regulate the flow of the information within a cell
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and are calculated with four activation functions, the first three gates by sigmoids

functions and the latter by a tanh function.

These gates are used to calculate two hidden states, one defined as a hidden state

and the other as cell state. Overall the process within an LSTM can be formalized as



i

f

o

g


=



σ

σ

σ

tanh


W

ht−1

xt



ct = f ċt−1 + iġ (4.21)

ht = oṫanh(ct)

where i , f , o, g are the four gates, ht−1 is the hidden state for x the time t − 1 , W is

the matrix of the weights, and xt is the input at time t , ct is the cell state at time t

and ht is the hidden state for the time t . The sizes are: (4ih x 2ih) for W, (4ih x 1)

for the vector holding the values of the four gates i , f , o and g and ih correspond to

the number of elements in the vector ht .

The inner structure of a LSTM cell, in particular the forget gate, avoids the vanishing

gradient problem during the back-propagation algorithm for the optimization of the

weights in the network.

A modification of LSTM networks is called BIdirectional LSTM (BILSTM). A BILSTM

network consists of two LSTM networks, one takes the input in the forward direction,

the other in a backward direction, increasing the amount of available information to

the network, i.e., the network will have information about both what precedes and

follows a given input of the analyzed sequence.

4.4.3 Convolutional neural networks

Convolutional Neural Networks (CNN) are another type of ANN, widely applied for

image classification (Goodfellow, Bengio, and Courville, 2016). The extraction of the

patterns in the images is manly due to the use of filters or kernels.

A kernel can be seen as a shifting window moving over the image, which is the

sample. The kernel is a matrix of weights. At each shift the weights are multiplied
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element wise with the portion of the sample selected by the kernel. The result of this

operation is called convolved matrix, which is a reduced form of the original matrix.

The kernel and the calculation of the convolved matrix are done in the convolutional

network, the core of CNN. The next layer is called pooling layer, which is another

reduction performed on the convolved matrix, useful both in terms of decrease of

computational cost and feature extraction.

A pooling layer is another kernel shifting over the convolved matrix. The two pooling

strategies are: max pooling or average pooling. In the first case, the kernel will keep

the maximum value of the windows over which the kernel is hovering, in the other case

the values are averaged.

In CNN multiple layers can be stacked. For instance, AlexNet (Krizhevsky,

Sutskever, and Hinton, 2012), one of the first GPU implemented CNN, winner of the

ImageNet Large Scale Visual Recognition Challenge in 2012, has 5 convolutional layers

and 3 pooling layers.

In classification contexts, the output from the convolutional layers is fed into a feed

forward network to obtain the final classification. Also for CNN, the training goal is

to optimize the kernel weights to minimize the loss function. The same optimizer and

back propagation algorithm are also applied for CNN.

4.5 k-Nearest neighbours

k-Nearest neighbours (kNN) is a non-parametric modeling method used for both

classification and regression purposes. During this project it has been applied for

classification.

The basic idea is that the training samples are distributed in a space defined by their

features. When a new sample has to be predicted by the algorithm, kNN uses the

frequency of the classes of the k nearest neighbours included in the training set to

determine the class of the new sample.

The comparison of new samples with those included in the training is made by

calculating all the distances between the new (unknown) sample with all the others.

Thus, one of the drawbacks of the approach is that the computation time needed to
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classify a sample depends on the number of samples included in the training set, and

it can be long with large databases. The major advantages of the KNN classification

are its simplicity and the classification efficiency (Kowalski and Bender, 1972). The

determination of the number of neighbors to use (k) is done by cross-validation.

4.6 Classification measures

The classification performances discussed in chapter 5 have been evaluated by means of

confusion matrix and derived measures: Non-Error Rate (NER), precision, sensitivity

and Receiver Operating Characteristic (ROC) curves.

The classification results can be summarized in the so-called confusion matrix. This is

a G×G matrix, where G corresponds to the number of classes. Rows represent the

experimental classes, while columns represent predictions. Thus, diagonal elements cgg

of the confusion matrix represent the number of correctly classified samples in the g-th

class, while the off-diagonal values correspond to misclassification, such that cgc holds

the number of samples of class g predicted as class c. Given the confusion matrix, the

sensitivity (Sng) for the g-th class is defined as:

Sng =
cgg
ng

(4.22)

where cgg is the number of samples of the g-th class correctly classified and ng

corresponds to the total number of samples that belong to the g-th class. As such, the

sensitivity summarizes the ability of the model to identify the samples belonging to a

given class. The NER, also known as Balanced Accuracy) is defined as the mean of

class sensitivities

NER =

∑G
g=1 Sng

G
(4.23)

The precision (Prg) corresponds to the ratio of samples of class g correctly classified

over the number of the samples predicted into the g-th class:

Prg =
cgg
n′g

(4.24)

As such the precision is used to quantify how many of the samples predicted as
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class g are actually belonging to that class.

Receiver Operating Characteristics (ROC) curves are a graphical tool for the

diagnosis of a classification model. The curve for a given class g is obtained by plotting

the False Positive Rate (FPR) versus Sng, also known as True Positive Rate (TPR),

at various scores thresholds. The scores are calculated during the classification and

indicate which is the most likely class for a given sample. Thus, it is possible to

adjust the score thresholds for the assignment of the predicted class and calculate the

respective FPR and TPR. The best model would be characterized by a point in the

upper left corner of the plot, where specificity and sensitivity are both 100%, which

correspond to FPR equal to 0 and TPR equal to 1. The Area Under the Curve (AUC)

corresponds to the value of the area under the ROC curves. For instance, a perfect

classification model has an AUC equal to 1 while for a random classifier, where the

ROC curves correspond to the diagonal of the plot, the AUC would be 0.5. Further

details for all the classification diagnostics can be found here (Ballabio, Grisoni, and

Todeschini, 2018).



71

Chapter 5

Results

In this chapter the results of this PhD project are reported. The first part describes how

the algorithm behind the AutoDise system has been designed and how it handles the

steps to obtain a non redundant, yet comprehensive, peak table applying PARAFAC2

modeling on GC-MS data. Then the dedicated GUI, developed to implement AutoDise,

is described. In the second part, the results from the deep learning and machine

learning models for the classification of the elution profiles are reported.

5.1 AutoDise

AutoDise is an expert system, developed during this PhD project, to automatically

obtain the peak table from the analysis of GC-MS untargeted data by means of

PARAFAC2. It is based on a multistep workflow:

• intervals definition;

• models calculation;

• components selection;

• compounds identification and quantification;

• peak table.
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5.1.1 Intervals definition

As described in chapter 4, PARAFAC2 models are calculated on defined elution time

regions of the GC-MS data. This implies that if a peak is not (fully) included in any

interval, it will not be resolved. Thus, in order to extract all the chemical information

in the data, the aim is to define at least one interval for each peak. Many methods

exist to identify the peaks in chromatographic data. For instance, in all the software

described in chapter 3, peak detection algorithms are implemented. However, they

are not automatic since the user is required to set different parameters, for example

the width of the filter applied for the identification of the peaks. Another option to

automate the definition of the intervals could be the AI binning proposed by De Meyer

and colleagues (De Meyer et al., 2008), which detects the regions where there are

peaks, would seem a feasible method. However, to apply these binning approaches

and other related methods (Anderson et al., 2008; Davis et al., 2007; Anderson et al.,

2011):

• the elution profiles have to be aligned;

• the boundaries are set at the local minima, i.e. the saddle points, between peaks.

One of the advantages of PARAFAC2 is the possibility to handle one shifting mode.

Accurate profile alignment would make it unneeded to apply PARAFAC2.

Setting the boundaries at the saddle points is similar to the drop valley method. As

described in chapter 2, it would lead to inaccurate quantification of the compounds.

In a few words, setting the boundaries of the intervals at the saddle points, the tails of

the peaks would be excluded, thus the integration of the area would provide misleading

results. Moreover, since the boundaries are set at the saddle points, the peak must be

detectable inspecting the raw data. It can happen that small peaks are hidden in the

signal of the baseline, thus, applying these binning approaches, such peaks would not

be detected and not included in any interval. These aspects limit the application of

current approaches for the global analysis of raw GC-MS data.

Summing up, the definition of the intervals must take into account:

• the time shifts;

• the presence of unnoticeable peaks.
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Figure 5.1 – A: In black are shown the TICs from Quintanilla-Casas et al., 2020, the
coloured lines represent the intervals defined by AutoDise. Intervals with the same length
are represented with the same color. The y position of the lines has the purpose to ease
the visualization. B: Detail of the TIC and the intervals.

The interval definition implemented in AutoDise starts with a preliminary alignment

which solves the most severe shifts. The aim of this step is to more easily assign which

peaks belong together in the next steps. This step is only essential e.g. for runs that

extend over months where the retention time shifts can be quite severe and abrupt and

it is emphasized that the alignment is crude and does not aim at perfect alignment –

just adjustment of severe shifts. Afterward, the intervals are set to span the whole

length of the chromatographic run, i.e. the entire chromatogram is considered, with no

region excluded. In particular, intervals of five evenly distributed lengths (in seconds)

are defined. The minimum length is three seconds, the maximum is thirty, which is

a common time range for the elution of peaks in GC-MS. For each of these interval

lengths, the whole chromatogram is divided into intervals with the corresponding

length from the first time point and onwards, such that these intervals overlap by two

thirds. The result is a set of overlapping intervals spanning the whole chromatogram.

As a result, about 85 intervals are defined for each minute of the chromatogram. As is

possible to notice from figure 5.1, each part of the elution profiles is covered by several

intervals. This over-redundant approach to select intervals has demonstrated to be

important for two reasons:

• Extracts all the peaks including those not visually observable

• Obtains a proper interval for each peak in the data.
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Intuitively, the computational time to fit the PARAFAC2 models will increase by

defining so many intervals. Similarly, it can be expected to obtain several models that

encompass the same chemical compounds. This will be exploited in the next steps as

described below.

5.1.2 Models calculation

The model fitting is performed by means of the flexible PARAFAC2 algorithm described

in Cohen and Bro, 2018. Differently fromthe normal PARAFAC2 algorithm based on

ALS (Kiers and Smilde, 1995), the flexible approach allows non negativity constraint

on each mode, including the resolved elution profiles. This is relevant for different

reasons:

• the experimental data is non negative, thus the non negativity constraint gives a

more accurate representation;

• numerical problems such as two component degeneracy are solved to a large

extent;

• mostly ALS and flexible solutions are similar but when they are not, the flexible

solution is mostly the better one, as shown in figure 5.2.

For each interval several models are calculated, with an increasing number of

components. By default, the minimum number of components is one, the maximum is

eight.

The number of components should be enough to model all the contributions in each

interval defined on the experimental data. Thus, by using narrow, automatically

defined intervals it is expected that only few components are needed.

The number of models obtained depends on the number of intervals defined. Considering

that for each minute of the chromatogram 85 intervals are defined, calculating eight

models for each interval, a total of 680 models are fitted, corresponding to a total of

3060 components, for each minute of the chromatographic run.

5.1.3 Components selection

The component(s) selection step, compared to previous tools proposed with the same

aim (Kamstrup-Nielsen, Johnsen, and Bro, 2013; Johnsen et al., 2014), is based on a
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Figure 5.2 – Four intervals (black lines, first column) are shown. For each a PARAFAC2-
ALS model (second column) and a flexible PARAFAC2 model (third column) have been
fitted. In all the cases the models include the same number of components. It is possible
to notice that the flexible PARAFAC2 models give a better solution compared to the
PARAFAC2-ALS models.

different strategy. The idea of previous tools was to identify the appropriate model for

each interval, and afterward the components describing the chemical compounds, i.e.

the peaks, were extracted from the selected models to be included in the peak table.

However, two considerations should be highlighted about this approach. The first

point is that the identification of the right model for a given interval by means of these

tools can be ambiguous and this aspect is highlighted also by the authors of the two

articles where the tools have been proposed.

The second one is that the final selection of the components describing the peaks

is left to the user, since the tools only identify the model with the right number of
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Figure 5.3 – Components extracted from seven different models, describing the same
chemical compound.

components rather than selecting the components that are describing the peaks.

Differently, AutoDise skips the preliminary step of the model identification and the

peak table is obtained inspecting each and every model and selecting the components

that are describing the peak. Skipping the preliminary selection of the models is based

on the empirical observation that different models, i.e. models built on the same

interval including different number of components or also models built on different

intervals but covering the same peak, mostly describe a given contribution in the data

equally well.

In figure 5.3 it is possible to notice that components extracted from different models

built on the same interval can describe a specific contribution equally well; in table 5.1

the proposed identification, obtained comparing the resolved spectra with the NIST

library, are shown. The identifications have been obtained considering the match

factor, i.e. the inverse of the cosine distance between the unknown and the reference

spectra (normalized between 0 and 999) (NIST, 2020).
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Table 5.1 – Identified compound and match factor for the 6 components shown in figure
5.3.

Model Component Identified compound Match factor

2 2 L-Alanine, ethyl ester 685

3 3 L-Alanine, ethyl ester 685

4 4 L-Alanine, ethyl ester 684

5 5 L-Alanine, ethyl ester 689

6 3 L-Alanine, ethyl ester 668

7 4 L-Alanine, ethyl ester 666

Thus, AutoDise is based on the analysis of the components rather than the analysis

of the models. Each component from every PARAFAC2 model is analyzed in order to

assess if it is describing a chemical compound.

5.1.4 Component screening

As mentioned before, each component from every PARAFAC2 model is analyzed in

order to assess if it is describing a chemical compound, i.e. a peak. This is achieved

with different tests. A first set of tests has been conceived to remove obvious artefacts:

1. The first of these tests is based on Tucker’s congruence coefficient (Tucker, 1951;

Lorenzo-Seva and Ten Berge, 2006) to identify and discard components affected

by modeling artifacts, and it is conceived to reduce the number of false positives

in the final peak table. Occasionally, models can include two or more of the

modelled components with highly correlated trend; in particular, this happens

with overfitted models. These components are not reflecting chemistry and this

artifact often occurs as a problem related to the use of an improper number of

components.

Tucker’s congruence coefficient measures the cosine of the angle between any

pair of vectors, resulting in a range from -1 to 1; it can be seen as a non centered

Pearson Correlation. The Tucker’s congruence coefficient of the scores, of the

mass spectra mode and of the mean profile of the elution mode of each component

is calculated comparing the scores, the mass spectra mode and the mean profile
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of the elution mode respectively of all the other components in the same model.

When components included in the same models have the absolute value of at

least one of the coefficients above 0.95, this set of components is discarded.

This threshold has been adopted according to Lorenzo-Seva and Ten Berge, 2006,

where it has been shown that components with a Tucker’s congruence coefficient

greater than this value are describing the same contribution.

2. Components that exceed the original signal intensity of the experimental data

are filtered out as these indicate an invalid result. These components are not

meaningful since the signals from significant components are supposed to be non

negative and additive. Each component is analyzed and components exceeding

the size of the corresponding data by a fraction higher to 10% are removed. This

does not occur often and it would suggest some convergence problem during the

fitting of the models.

This first screening has been conceived to remove components that are meaningless

from a modeling point of view.

A second screening is subsequently performed to identify which of the remaining

components are describing chemical compounds, i.e. the peaks. In this phase, a crucial

role is played by the CNN network proposed by Risum and Bro (Risum and Bro,

2019). This is a deep neural network able to classify the elution mode profiles resolved

by a PARAFAC2 model. It has been demonstrated that this model can successfully

distinguish between four classes of elution profiles:

1. the label "Peak" is assigned to profiles describing a full elution peak;

2. the label "Shoulder" is assigned to profiles describing a cut-off or shoulder of a

peak;

3. the label "Baseline" is assigned to flat profiles describing the baseline signal;

4. the label "Other" is assigned to mixed profiles that do not meet the shape of the

other classes.

Another output of the CNN model is the probability-score, called "Niceness", for each

and every resolved elution profile of each component. Basically, this means that for
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each and every component, the model provides the probability of each resolved profiles

of representing a peak. In this second step, the profiles resolved by the PARAFAC2

models are analyzed by the CNN and the classification results are applied to identify

the components that are describing the peaks. It could be assumed that applying

the model directly to the resolved profiles would result in a list of components to be

included in the peak table. However, there are some considerations worth mentioning:

• as shown before, components from different models can describe the same peak.

Thus, it is needed to identify the components that are describing the same

chemical and select somehow only one representation for each peak.

• A second, important consideration is that it is not obvious how to use the

classification results from the CNN model. A component includes as many profiles

as the number of samples analysed, and it is not assumed that all samples have

the same compounds. This means that not all profiles in a component describing

a peak actually have the shape of a peak. The result is that the labels assigned

to the profiles of a component by CNN are mixed and it is not always obvious

whether a component is actually describing a peak or not. Therefore, criteria

must be defined to exploit the classification results for component selection.

During the first developments of this step, the screening of the components was

based only on the "Niceness". For each component, the samples with the highest

"Niceness" were considered, in particular, the upper quartile of niceness. If this subset

of profiles had a mean "Niceness" higher than .9 then the component was considered

as describing peaks. However, during the development of AutoDise, and as a result

of early applications on experimental metabolomics data, this single criterion proved

insufficient to select components appropriately. It was common to include components

with several profiles classified as "Shoulder" peaks, or with profiles characterized

strange shapes classified as "Other".

In order to perform a more refined screening, other criteria have been conceived.

During the development of these new criteria more attention has been paid on ensuring

reliability than on the extraction of all available information, which explains that

occasionally appropriate components are not selected.

As a result of this research, the parameters listed below were introduced. In particular,
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the following parameters are assessed considering all the profiles belonging to a given

component, and a component is assigned as a peak when:

1. the number of elution profiles classified as "Other" and "Shoulder" is lower than

the number of profiles labeled as "Peak" and "Baseline".

The profiles belonging to the first two classes are not important for the identi-

fication of the peaks, thus, if most of the profiles belongs to these classes, the

component is discarded. Instead, if some of the estimated elution profiles of the

specific PARAFAC2 component are describing a peak, and some of the profiles

are labeled as "Baseline", it indicates that some of the analyzed samples do

not include the specific compound thus the elution profile is flat resulting in a

"Baseline" like shape.

2. The number of profiles labeled as "Shoulder" is lower than 10% of the total

number of profiles belonging to the component.

A high number of "Shoulder" profiles suggests that there is a peak, but the

interval is misplaced with respect to it. Considering the high number of used

intervals, it is likely that other models are centered on that peak, thus components

describing shoulder peaks are discarded.

3. The mean peak probability score, over all profiles belonging to a given component,

is greater than 0.3.

This means that a component must include about the 30% of the profiles

describing a peak; if the mean peak probability score is lower, the component is

discarded.

4. The ratio of the variance of the profiles with a "Niceness" equal or higher than

0.6 to the variance of the profiles with a peak probability lower than 0.6 is smaller

than a threshold of 0.4.

This step indicates those components where only a few profiles, or samples, have

been labeled as containing a peak, whereas most of them are not and with intense

signals are removed.

Only components that meet all four criteria are selected as a peak. The result of

this step is a list of components that are describing peaks. However another step is
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Figure 5.4 – Two components from two different models describing the same chemical
compound, as it possible possible to notice from the mass mode and the score mode. It is
possible to notice in the detail the shift of the maximum intensity

performed before to actually selecting the components to be included in the peak table.

After the component screening and the elimination of those components which are not

related to reliable peaks, the result is a list of components selected as describing peaks.

5.1.5 Component clustering

Considering how the intervals are defined, it is expected that several selected com-

ponents represent the same chemical peak. In order to avoid including the same

compound several times in the peak table, all the components with the same retention

time are clustered, as different versions of the same compound are present and only

the best of these several candidates is selected.

In the first versions of the algorithm, the clustering of the selected components con-

sidered only the elution time of the maximum intensity of the most intense profile.

The assumption was that different components describing the same peak would have

the maximum intensity at the same elution time. However, this assumption is not

consistent with experience. For instance, it happens that components describing the

same peak have the maximum intensity of the most intense profile at different elution

times, as shown in figure 5.4

Moreover, another aspect that does not allow for consideration of only the maxi-

mum intensity is the retention time shift of the peaks. Because of the time shifts, the
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peaks related to the same chemical across the samples have the maximum at different

elution times. Considering how the intervals are defined in AutoDise, it happens that

different (close) intervals do not include all the profiles related to a given peak. Thus,

it can happen that the elution time of the maximum intensity of a given peak changes

from component to component. If this is the case, considering only the retention time

of the maximimum intensity, more components describing the same peak would be

included in the peak table. To solve both these issues a less stringent clustering criteria

has been applied.

The retention time of a component is defined as the average elution time of the maxi-

mum in the elution profiles mode for each component considering all the profiles. The

value is rounded to the first digit (in minutes, using decimals rather than seconds).

The result of this clustering is a set of groups including components from different

models and/or intervals all describing the analytes eluting at the same time.

5.1.6 Clusters inspection

The rounding of the elution time for the cluster of the components may lead to more

than one chemical compound being included, i.e. components describing co eluting

peaks. Thus, in the final step, each cluster is analyzed to assess whether all the

components grouped together are actually describing the same chemical compound. In

particular, the resolved mass spectrum and concentration profiles of the components are

compared by using the Tucker’s congruence coefficient. If a given cluster comprises n

components , two n-by-n matrices will be obtained, each containing Tucker’s congruence

coefficients for each couple of components. The idea is that components with a Tucker’s

coefficient higher than 0.8 for either or both the matrices are describing the same

chemical compound. In this case, the threshold has been lowered compared to the

proposed values in Lorenzo-Seva and Ten Berge, 2006, in order to set more stringent

criteria to avoid redundancy in the final peak list, i.e. to avoid that a given peak

is reported more than one time. When components within a group are describing

different chemical compounds, they are divided in different subgroups according to the

different chemical compounds. Thus, the components, previously grouped according

to the elution time, are eventually divided into subgroups according to the chemical
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Figure 5.5 – A:Tucker’s congruence coefficient plot of the score mode among the components
included in the cluster. B:Tucker’s congruence coefficient plot of the mass mode among
the components included in the cluster. C: Components selected after the screening of the
components within the cluster.

information extracted by the model. An example is given in figure 5.5. In the example

a cluster made of 22 components is shown. From the Tucker’s congruence coefficients

calculated considering the resolved scores (figure 5.5 A) and masses (figure 5.5 B),

it it possible to notice that the components are describing two different chemical

compounds, resulting in two subgroups.

As a final filtering step, subgroups containing only a single component are dis-

carded. One of the driving features of our system is the comparison and integration of

components from a range of different models. When the system identified multiple

components from different models describing the same information, i.e. peak and

spectrum, this is a strong evidence for the correct identification of a peak underlying

the data. If instead a component is found to not match any other components across

all models, this indicates a less robust/trustable solution. These non-matching compo-

nents are therefore removed from further analysis.

Finally, for each group/subgroup, the component with the highest "Niceness", as

calculated by the deep neural network, is included in the peak table and used for the

identification and relative quantification of the chemical constituent (figure 5.5 C).

Other components within that group/subgroup are discarded or only used as insights

to the grouping as part of the diagnostic tool.



84 Chapter 5. Results

5.1.7 Peak table definition

Once the components have been selected, the quantification of the corresponding com-

pound for the analyzed samples is obtained multiplying the scores by the total norm of

the elution profiles mode, where the norm of the elution profiles mode is determined as

the norm of the relevant column of Bk, resulting in the relative concentration across

all the samples for the given molecule. The identification is performed by exporting

the spectra of the selected components to the NIST library. Each resolved spectrum

is compared to the library and the best identification is selected, based on the NIST

match factor. The identification and quantification results, i.e. the peak table, are

automatically saved in an .xlsx file called autodise-table. Details about the file are

given in Appendix I.

It is important to clarify that the matching of the resolved mass spectra with any

library should be considered as a first, tentative, identification of the given compound.

Further identification of a molecule requires a cautious consideration of the experimental

settings and most likely the analysis of standard compounds and/or the application of

other analytical techniques such as NMR, in order to properly confirm the molecule

identity and/or eventually correct and improve the result.

5.1.8 Case study: Analysis of GC-MS olive oils data.

One hundred sixty-two virgin olive oil samples, from extra virgin, virgin and lam-

pante quality grades, have been analyzed by head-space solid-phase microextraction

(HS-SPME) GC-MS. These samples are a subset of the samples used previously in

(Quintanilla-Casas et al., 2020), where the details about the experimental settings are

given. This could be considered a typical GC-MS dataset in terms of peak density and

complexity (approximately 100-300 peaks), chromatogram length (around 58 minutes),

acquisition rate (5.1 scans/s), sample size (162 samples), a visual representation of the

TICs is given in figure 5.6).

The data are affected by severe retention time shift across the samples, this is due

to a five-months analysis period. In untargeted analysis, quality control procedures are



5.1. AutoDise 85

Figure 5.6 – TIC of the data.

a crucial aspect and several approaches have been proposed in this context, specifically

when aiming for methods validation (Cavanna et al., 2018). However, issues such as

peak shifts or variations in the analytical response are likely to appear and should be

properly handled (Amigo, Skov, and Bro, 2010). Therefore, the GC-MS raw data set

has been aligned to partially solve the peak shifts and improve the performance of the

automatic interval selection, even though PARAFAC2 can deal with peak-shifts across

the samples. This was done by means of a multistep approach: correlation optimized

shifting (CoShift) of the TICs (Engelsen, Belton, and Jakobsen, 2005) followed by

COW applied on the coshifted TIC and applied on individual m/z channels (Skov

et al., 2006). These steps did not aim at a perfect sample alignment, the aim was to

remove obvious misalignments and thus improve the performance of the automatic

interval selection, even though PARAFAC2 can model peak shifts across the samples.

The data have been split in six slightly overlapping calculation-batches considering the

elution time axis and sequentially analyzed one at time to avoid computer memory

problems during the calculation of the models and to limit the computational cost of

each round. This was due to the dimension of the dataset and the number of intervals

defined.

A total of 374,184 components have been calculated. Overall, the calculation of the

models took two weeks, the screening of all the components required less than one hour.

The models have been calculated with a Intel® CoreTM i7-6950X CPU processor with
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Figure 5.7 – Schematic representation of the AutoDise workflow applied for the case
study. The data have been split into batches considering the time axis. For each batch,
the intervals have been automatically defined, the models have been fitted looping over all
the intervals. The selection of the components took place once all the models have been
calculated. When AutoDise detected a component as describing a chemical compound, all
the models calculated considering the corresponding interval have been extracted. The
selected models, from all the batches, have been joined together and a final round of
component screening, clustering and selection have been performed to obtain the peak
table.

a dedicated RAM of 32 GigaBytes. The calculated models have a final dimension in

the order of 70 GigaBytes, about 10 GigaBytes for each batch. Because of the split of

the data in batches, slight modifications to the original AutoDise algorithm have been

adopted, as shown in figure 5.7. At first, AutoDise was applied on the models of each

batch, to keep only the relevant information within each of them. In particular, all the

models for a given interval were extracted when at least one component of the models

was selected. In total, 328 intervals have been extracted from the six batches. AutoDise

was applied a second time considering the 328 intervals to avoid edge artifacts between

the batches. As a result, a final peak list including 340 chemical compounds has been

obtained. The relative concentration and the tentative identification based on the

NIST matching have been obtained for each compound.

As a first assessment, the performance of AutoDise has been visually evaluated,

assessing if the proposed solutions are adequate. All the selected components account

for a corresponding peak in a meaningful way (figure 5.8 A). However, the absence of

components for some prominent peaks can be noted (figure 5.8 B, C, D). Although

figure 5.8 gives an overview of AutoDise performance, a thorough assessment has been

performed, comparing the automated results with a comprehensive manual analysis.

This manual analysis resulted in a total of 133 identified and quantified compounds.

Manual tentative identification, integration and semi-quantification steps were per-

formed by average-experienced GC-MS users by means of the ChemStation (Agilent)
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Figure 5.8 – A: The TIC of the samples is shown in black. The components selected by the
expert system are shown and represented by the coloured lines. The differences in colour
serve to aid visualization. B, C, D: three details of some problematic peaks discussed in
the text. The areas shown correspond to the three red boxes in 5.8 A. Reproduced from
(Baccolo et al., 2021)

software. Compounds were tentatively identified comparing the corresponding mass

spectra and retention times with those available in the WILEY mass spectrum library.

The number of compounds (n=340) identified by AutoDise is more than twice com-

pared to the number obtained from the manual procedure (n=133). Thanks to the

exhaustive peak table obtained by AutoDise, several of the compounds omitted or

not detected in the manual analysis could be indeed linked to oxidative, fermentative

and biogenetic pathways and, thus, relevant for the quality of virgin olive oils, thus

providing more information compared to the manual analysis

The peak identities and retention times have been used for the comparison of

the two peak tables. In the peak table obtained by AutoDise, 118 out of 133 peaks

(89%) identified with manual analysis using ChemStation were included. The Pearson

correlation coefficients of the relative concentrations across all 162 samples as provided
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Table 5.2 – Pearson correlation coefficients among the concentrations estimated by
AutoDise and complementary manual PARADISe and concentrations estimated by the
manual analysis. Reproduced from (Baccolo et al., 2021).

Target compounds (n=133)
Pearson Correlation coefficient AutoDise PARADISe
>0.9 99 12
0.7-0.9 10 2
<0.7 5 1
NA 4 -
TOTAL 118 15

by PARADISe and the manual analysis were calculated and summarized in table 5.2.

The 84 % of these compounds (99/118) had a correlation coefficient above 0.9. The

remaining 13% of the compounds (15/118) had a correlation coefficients below 0.9.

Analyzing all the specific cases, it has been realized that errors were due to the incor-

rect integration during the manual analysis. Many of these compounds were present

at low levels and generally coeluted with more abundant compounds, complicating

both the manual identification and the manual quantification steps. For the 3% of

the compounds (4/118), it was not possible to calculate the correlation between the

concentrations estimated by AutoDise with the manual analysis as the latter was

estimated including coeluting compounds.

In order to further analyze the AutoDise results, a thorough investigation of the

fifteen compounds identified by the manual analysis and not detected by the automatic

analysis has been performed. Overall three distinct issues have been found:

Interval selection issues In this case the intervals automatically defined were not

wide enough to include very intense peaks, such as those represented in figure 5.8

B,C,D. Twelve of the fifteen were not included because of limited interval range.

Component selection issues The remaining compounds were excluded by Autodise

during the analysis of the components despite the fact that components for these

peaks were obtained. An example is the peak corresponding to 2-methylbutyl

acetate. Manually investigating the models obtained by AutoDise, a compo-

nent describing the chemical compound has been found (figure 5.9 A), but the

component which explained this chemical compound was not reported by the

automated system.
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Figure 5.9 – A: elution profile modes of the model. The component corresponding to
2-methylbutyl acetate is colored in yellow, the component profiles with high Tucker’s
congruency are colored in purple. B: Score modes of the two components, the two profiles
almost entirely overlap each other. The figure has a double axis so to better appreciate
the coherent trend between the two components. Reproduced from (Baccolo et al., 2021).

The reason why is due to the high Tucker’s congruency of the scores mode with

another component within the model (figure 5.9B).

As described in the previous section, during the development of the criteria for

the components selection greater attention was focused on ensuring reliable solutions

than on exploiting all available information, and this is the reason why appropriate

components were occasionally not selected. For the two cases above, issues related to

the interval definition step can be easily solved by manually defining an interval that

spans the full peak, then AutoDise can be applied as well on the new models fitted

on the manual selected intervals to select the best solutions. This strategy has been

adopted for 12 of the 15 above mentioned missing compounds, where no appropriate

interval had been defined automatically (table 5.2).

The solution of issues related to the second case outlined above is more laborious.

The user should manually analyze and select the component that corresponds to the

observed peak, as routinely performed with PARADISe.

As a result, comparing the manual targeted approach and the manual PARADISe,

80% of compounds achieved a good correlation (> 0.9). The summarized results are

available in table 5.2, and an extension of this table can be found at Baccolo et al.,

2021. The offered solutions for the fifteen missed compounds show that, although

automatic selection system performed very well compared to a fully manual approach,

there is still room for improvement.
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An experienced GC-MS user could still play role in data treatment process, since

knowledge about what to expect from the analysis of a given sample set is essential to

check and interpret the resulting peak table. As such, AutoDise should not be taken as

a black box. It is conceived to ease the analysis of GC-MS data, but the analysis and

the interpretation of the results is a crucial aspect that should be performed by skilled

analysts. In particular, it would be necessary to check when an important peak is missed

and, if so, to be able to manually run PARADISe or an alternative method. Despite

this, the benefits that the automated PARADISe provides regarding the GC-MS data

treatment are noteworthy, both in terms of time saving, tentative identification and

relative quantification accuracy and comprehensiveness of the chromatographic data.

5.1.9 AutoDise GUI

In this section, the GUI (MATLAB 2021a) developed to implement the AutoDise

algorithm is described.

It could be argued that the description of a GUI is not relevant in a scientific publication.

However at the same time, when new findings are achieved in machine learning and

chemometrics, they often appear in terms of a mathematical protocol (an algorithm),

written in a scientific paper. This is of great value in itself, but will only be accessible

to people that understand that language, so to speak. Nevertheless, the algorithmic

developments presented in this thesis, while interesting to the chemometrics community,

also has direct and immediate relevance for a scientific audience that does not speak

our scientific language.

In order to make these findings accessible to more people, that is, in order to assure

our chemometrics findings have impact and benefit to a wider scientific audience and

also to the society, we need to do more than just publish algorithms. At the lowest

level we can make software implementations in MATLAB, R, Python etc. but again,

not all people are able to use such programs. Therefore, taking things one step further

and making graphical user interfaces for our algorithms is scientifically needed, in

order for our results to gain its intended use.

The GUI is organized in four tabs; the functionalities of each tab are described in

this section.
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Figure 5.10 – First tab of the AutoDise GUI.

Tab 1: Models calculation

The first tab, called Models Calculation, of the AutoDise GUI is shown in figure 5.10.

The Load (figure 5.10 A) button allows to load the data. The data must be a .mat

file including a structure called Data. The structure must include the following fields:

M : in this field the three way GC-MS data are stored,

• the first dimension corresponds to the samples;

• the second dimension corresponds to the elution time;

• the third dimension corresponds to the mass spectra.

TIC: in this field the two way TIC of the GC-MS data are stored,

• the first dimension corresponds to the samples;

• the second dimension corresponds to the elution time;

rt: in this field the vector holding the elution time values is stored. Both a column or

row vector format is accepted.

mz: in this field the vector holding the mass spectra range is stored. Both column or

row vector format is accepted.
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FileNames: in this field is stored a cell vector holding the name of the samples. Each

cell must contain a single name. Only column vector is accepted.

Box – Tip

If only the .cdf files are available, they can be loaded in PARADISe v5.X; once

loaded the data can be saved as .mat. The file generated by PARADISe is

accepted by the AutoDise GUI.

Once the data are loaded, the TIC of the data are automatically plotted in the main

window (figure 5.10 B). To start the analysis of the data, the user has two options:

• the full auto analysis;

• the semi auto analysis.

The first option is selected by clicking the Get peak table button (figure 5.10 C).

Selecting this option, the loaded data are passed through the whole AutoDise workflow

as described in the previous section. The number of intervals is printed on the tab

(figure 5.10 D). To check if the calculation is proceeding, the number of the interval

currently being processed is printed on the tab (figure 5.10 E).

Box – Tip

It is a good practice to not calculate too many models in a single run. If more

than 1000 intervals are defined, the suggestion is to split the data in different

batches as in the previous section.

Once all the models are calculated, the components selection step is perfomed.

Once the selection is completed, a window will appear to select the folder where to

save the peak table. The peak table is saved in a .xlsx file named autodise-table. Five

sheets are included in the file.

Overview: in the first sheet information about the analyzed data, the analysis pipeline

and a legend of the other sheets is given.

Relative Concentrations: the second sheet contains the relative concentrations of

each compound across all the samples.
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Resolved mass spectra: in the third sheet the resolved mass spectra for all the

selected compounds are reported.

Top NIST hits: in the fourth sheet the top two NIST hits for each compound are

reported.

Interval Details: the fifth sheet contains information and diagnostics about the

models from which the components have been extracted.

More details about the file are given in Appendix I.

The difference between the full auto analysis and the semi auto analysis is that in

the second option, the intervals are manually defined by the user and not automatically.

To manually define the intervals the user has to click the Select Interval button (figure

5.10 F). A cursor will appear and the boundaries of the interval can be defined by

clicking the start point and the end point on the TIC plot (figure 5.10 B).

Box – Tip

All the axes in the AutoDise GUI can be resized. Zooming in the TIC before

manually selecting the interval boundaries can be of great help.

The button must be pressed for each interval, thus after the limits are defined

for an interval, if the user wants to select another one the button must be clicked

another time. Each time an interval is defined, the interval counter (figure 5.10 D) will

be updated. Once all the intervals have been defined, pushing the Calculate button,

the calculation of the models will begin. The progression of the calculation can be

monitored looking at the message printed on the tab (5.10 E). Once the calculation

of the models and the selection of the components are terminated a window will ap-

pear to select the folder where to save the peak table as an .xlsx file called autodise-table.

Box – Tip

The only parameter that can be set by the user is the maximum number of

components included in the models. By default, it is set to seven (most of the

time it is enough to extract all the chemical compounds), but it can be changed
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in the box shown in figure 5.10 H. The higher the number, a longer time for the

calculation of the models.

Both in the case of full auto and semi auto analysis, the data and the calculated

models can be saved by pressing the Save button (figure 5.10 I). A window will appear

to select the folder where to save them as single .mat file called AutoDise_Session.

The file can be loaded in the GUI using the load button in the second tab, described

below.

Tab 2: Selection tab

The second tab of the AutoDIse GUI is called Selection tab, shown in figure 5.11. This

tab can be used to easily evaluate the choices and solutions given by AutoDise and

verify if the selected components are good or not. In this tab, it is possible to load

previous sessions using the Load button (figure 5.11 A), moreover the GUI can also

load sessions from the PARADISe platform v5.X.

Once the data are loaded, the number of intervals and the total number of components

loaded are updated below the Load button. Clicking the Selection button (figure

5.11 B), the models are analyzed and the components selected, as described in the

previous section. Once the selection is completed (the status is printed on the tab

(figure 5.11 C), it is possible to select the second subtab, called Results analysis.

Figure 5.11 – Second tab of the AutoDise GUI.
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Box – Tip

It is possible to check the results immediately after they have been obtained.

After the peak table has been saved it is possible to switch to this tab and start

the analysis, the data and the models are already loaded.

In this subtab, shown in figure 5.11 E, it is possible to explore the different clusters

and subgroups obtained during the selection of the components. Using the Cluster

spinner, it is possible to explore the different clusters. For each cluster:

• the number of subgroups for the specific cluster is reported (in the example

shown in figure 5.11 the number of subgroups within the cluster is 2);

• each component included in the cluster is reported in the table. The components

are identified by the interval number, the model from which they were extracted

(the model is identified by the total number of components included), and the

specific component number. In the table, the subgroup and so-called niceness

for each component is also indicated. The parameter Niceness is used to select

the best component for each cluster or subgroup.

The plots 1 2 and 3 in figure 5.11 are automatically updated when a new cluster is

selected.

In the Current Interval axes (figure 5.11 1) the selected component(s) (coloured)

over-impressed on the raw data (grey) are shown.

In the Masses and Scores panel the mass and the score modes for the selected

component(s) from each cluster/subgroup are shown. Each row corresponds to a given

subgroup and the colors are coherent with those in 5.11 1. An example is shown in

figure 5.11 3. A maximum of four subgroups can be visualized in the Masses and

Scores panel. If more than four subgroups are present for a given cluster, it is possible

to specify the subgroups to plot in the box (figure 5.11 D).

The plot in figure 5.11 2 is shown only for the clusters where subgroups have

been detected. It shows the subgroups correlation in terms of Tucker’s congruence
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Figure 5.12 – Preview plot showing the selected components (colored) overlaid on the
raw data (black).

coefficients, as explained in the previous section. It consists in the sum of the co-

sine distance between the spectra mode and the correlation mode between the best

components selected for each subgroup (colored square) and how the components

are distributed across the subgroup in terms of percentage. In the example, 5.71%

and 94.3% components belong to the subgroup 1 and subgroup 2 respectively. The

correlation across the best components of the two subgroups is about 0.7, indicating

that the two components are describing different chemicals.

In the third subtab, called Final table (5.11 F), it is possible to add unselected

components to the Peak table. Pressing the add button, a new row will appear in

the table and specifying the interval number, the model from where to extract the

component (identified by the total number of components included) and the actual

component number, the component will be included in the peak table. To remove an

added component, the remove button can be clicked and the last row of the table is

deleted. The preview button produces a plot, where all the selected components are

superimposed on the raw data. An example is given in figure 5.12.

Pressing the Peak table button a window will appear to select the folder where the

peak table is to be saved as an .xlsx file, with the same structure as described before.
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Figure 5.13 – Third tab of the AutoDise GUI.

Tab 3: Overview tab

In the Overview tab, shown in figure 5.13, it is possible to have an overview of a specific

model. To plot a model, the interval and the model, defined by the total number

of components, must be indicated in the two boxes in the tab (A, B in figure 5.13).

Once the two boxes have been defined clicking on the Plot button, the raw data, the

elution profiles mode, the scores and the mass mode of all the components included

in the model are plotted in the graphs 1, 2, 3, and 4, as indicated in figure 5.13. In

the Components box it is possible to select specific component(s) to be plotted. The

plots in the graphs 1, 2, 3, and 4 are automatically updated, showing the selected

component(s).

Components comparison

The Components Comparison tab is shown in figure 5.14. It can be used to compare a

maximum of three single components. To plot a component the user has to define in

the three boxes (A, B and C in figure 5.14) the interval number, the model from which

the component is selected (identified by the total number of components included in

the model) and the actual component number to be plotted, respectively. Clicking on

the Plot button the indicated component is plotted. In particular the axes 1, 2 and 3

highlighted in figure 5.14 will correspond to the elution profile mode, the score mode
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Figure 5.14 – Fourth tab of the AutoDise GUI.

and the mass spectra mode, respectively. In the example shown in figure 5.14, three

components (5, 3 and 7) from models including 5, 6 and 7 components respectively,

built on the interval 80, are shown.

5.1.10 Workflow optimization

The original workflow for AutoDise is described in the previous section and reported

in figure 5.7.

In the case study reported in the previous section, the data have been split in six

different batches and analyzed one at time to avoid computer memory problems during

the calculation of the models and to limit the computational cost of each round. This

was due to the dimension of the dataset and the number of intervals defined. In the

case study reported in the previous section, a total of 374,184 components have been

calculated.

However, from the workflow in 5.7 it is possible to notice that some of the operations,

such as the component screening, are repeated several times and that all the components

are saved during the calculation of the models. Considering all the six batches, the

generated files were in order of 12 Gigabytes each, for a total of about 96 Gigabytes.

Moreover, out of the 374,184 calculated components, only 1885 were selected by

AutoDise, corresponding to 0.5% of the total. In order to reduce the computational
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Figure 5.15 – New designed workflow for AutoDise

cost and the memory requirements, a new worflow, schematized in figure 5.15, has

been designed. The main differences compared to the previous workflow are:

1. the data do not need to be split;

2. the component selection is performed immediately after a model has been

calculated;

3. if no component(s) have been selected, the model is deleted;

4. once all the models are calculated, the clustering step is performed only consid-

ering the selected components;

Keeping only the models with selected components will drastically reduce the memory

needed to store the results. The new workflow will be implemented in the next version

of PARADISe (v6.0).

5.2 Machine Learning approaches for elution profiles classification

As described in the previous section, the CNN proposed in Risum and Bro, 2019 plays

a crucial role in AutoDise to identify the components describing the peaks, i.e. a

chemical compound. However, despite its effectiveness, during the optimization of the

system, some issues in the identification of the components have been noticed related to

the performances of the deep neural network, i.e. some elution profiles of components

describing peaks were not labelled as "Peak" by the CNN and thus not included in the

peak table. Investigating the reasons behind and looking for solutions, the main source

of ambiguity for the model was found in the original data used to train the model. In

particular, by visually inspecting the original data used during the training, it has
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been noticed that profiles with similar shapes were labeled as belonging to different

classes. This source of ambiguity cannot be handled by the trained model, thus a new

dataset made of manually labeled resolved elution profiles has been prepared and used

to train a new CNN model with the same architecture proposed in Risum and Bro,

2019, as well as CNN, a BILSTM model and a KNN model used as a benchmark.

The three approaches have been selected specifically considering the task and the

features of the samples. A kNN model classifies a new sample according to the most

frequent class of the nearest samples. The quality of the model is expected to increase

with the number of training samples. Considering the huge number of profiles generated

for this work, it appeared a viable alternative for this task. Convolutional neural

networks identify patterns within a sample regardless of the specific position and also

the performances shown in Risum and Bro, 2019 support the effectiveness of this

architecture, handling the retention time shifts. RNN, which LSTM and BILSTM

networks are part of, have been widely applied for classification of time series data,

and elution profiles belong to this category.

5.2.1 Dataset preparation

Head-space solid-phase microextraction (HS-SPME) GC-MS data obtained analyzing 66

olive oil samples were used to obtain resolved elution profiles by means of PARAFAC2.

The experimental details are available at Quintanilla-Casas et al., 2020. A total of 44

intervals on the time dimension have been defined and all the intervals were resolved by

PARAFAC2 modelling. A total of 306 PARAFAC2 models were calculated, resulting

in 1214 components. A total of 80124 estimated elution profiles were thus obtained

(1214 components x 66 samples) and then used as input of the classification models. In

particular, the 80124 profiles were randomly split into two sets: 68106 profiles (85%)

were included in the training set and the remaining 12018 profiles (15%) in the internal

validation set. The models were trained on the training set and their hyperparameters

were tuned based on the predictions of the internal validation set profiles. Moreover,

an external test set has been prepared to evaluate the predictive ability of the trained

models. It contains 7673 profiles preprocessed with PARAFAC2, as the training data.

These profiles have been retrieved as a subset from the test set in Risum and Bro,

2019. To increase the number and the variability of the data, crucial requirements for
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all the tested models, all the profiles have been duplicated and horizontally flipped,

resulting in a total of 175594 profiles.

5.2.2 Labelling

All the profiles have been manually labeled according to four classes: ‘Peak’, ‘Cutoff

peak’, ‘Baseline’ and ‘Other’. A preprocessing routine, according to Risum and Bro,

2019 was applied to all the profiles. First, each profile was linearly interpolated to a

length of 50 and normalized to unit vector, i.e., a vector with a norm equal to one. This

preprocessing equals the size of the elution profiles and, thus, allows the classification

of profiles with different lengths. At the same time, the normalization maximizes the

comparability of the profiles.

After the normalization, all the profiles were visually inspected and manually

labeled. A set of semi quantitative criteria was defined to be consistent during the

manual labelling of the elution profiles.

1. For a profile that is labelled as "Peak", the part of the time interval where

the peak is present is visually defined. The remaining part is called tails. The

maximum of the peak has to be higher than 0.1, the maximum of the tails lower

than 0.1, otherwise the profile is labelled as "Cutoff peak" or "Other’ depending

on the specific profile (figure 5.16 1 B, C).

2. For a profile that is labelled as "Cut-off peak", the part of the time interval where

the cut off peak is present is visually defined. The remaining part is called tail.

The maximum of the cut-off peak has to be higher than 0.1, the cut-off peak has

a minimum value to the right (Figure 5.16 B) or the left of the maximum (Figure

5.16 A) higher than 0.1, the maximum of the tail lower than 0.1, otherwise the

profile is labelled as "Peak" or "Other" depending on the specific profile (figure

5.16 B, C).

3. For a profile that is labelled as "Baseline" the flat or monotonically increasing or

decreasing trend is visually defined. The difference between the maximum and

minimum signal value has to be smaller than 0.2 otherwise the profile is labelled
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Figure 5.16 – Graphical representation of the labeling criteria. The dotted line highlights
the 0.1 threshold.

as ‘Other’ (Figure 5.16 D). Baseline profiles may show a negative peak (figure

5.16 1 C).

4. A profile is labelled as "Other" if it does not meet the criteria for the above

classes.

It should be noted that the set of rules does not include any indication about the

overall shape for any of the considered classes, and also the noise is not considered.

This is important for instance in the class "Baseline", where a strict monotonic trend

is extremely unlikely, because of the noise. Moreover, profiles showing a not negligible

amount of noise have been labelled as "Other". Nonetheless, a given threshold to

discriminate profiles based on noise has not been defined and the choice to assign a

profile to the class "Other" or to the most appropriate class was made according to

the visual evaluation of each profile.

As such, the proposed criteria can be seen as a reasonable rule of thumb to prevent

contradictions during the labelling phase, but cannot be automatically applied for the

labelling of the profiles. In total, including the doubling of the profiles, 175594 profiles

have been manually labelled and used during the training, the validation and the test

of the models. Details about the class distribution and the number of profiles for each

set are shown in table 5.3.

5.2.3 Models

5.2.4 CNN

Convolutional Neural Networks (CNN) are a family of neural networks widely applied

in image recognition. Several different variations in CNN architectures have been
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Table 5.3 – Number and distribution of profiles included in the training, validation, and
test sets.

Other Peak Cutoff
peak Baseline Total

Training
set

30.5%
41528

18.9%
25794

6.6%
8932

44%
59958 136212

Validation
set

29.7%
7150

19.5%
4698

6.4%
1548

44.3%
10640 24036

Test
set

34.5%
5296

24%
3682

15.1%
2312

26.4%
4056 15346

proposed, but in general they consist of stacked convolutional and pooling layers,

followed by one or more fully connected layer(s). The convolutional layer is the core of

a CNN, and it is based on a set of trainable filters or kernels. Details about the theory

of CNN are given in chapter 3.

The architecture of the CNN model has been implemented as described by Risum

and Bro, 2019. The network is made of four convolutional layers followed by two

dense layers. No further optimization was performed. Details about the settings and

optimization can be found in Risum and Bro, 2019.

5.2.5 (BI)LSTM

Recurrent neural networks (RNN) are a family of neural networks used to deal with

sequential data and to capture long-range dependencies between sequence data (Rumel-

hart, Hinton, and Williams, 1986). In particular, RNNs with Long short-term memory

(LSTM) and Bi Linear LSTM (BILSTM) units were considered (Hochreiter and Schmid-

huber, 1997). Details about RNN and LSTM and BILSTM are given in chapter 4.

In speech recognition, where (BI)LSTM networks are widely used, long-range depen-

dencies are important since the meaning of a sentence changes depending on how the

words are arranged. Hence, keeping track of the positions of the words, even when

they are not immediately next to each other, is crucial to understand the sense of the

phrase (Sundermeyer, Schlüter, and Ney, 2012). The same concept can be applied for

the classification of elution profiles. For instance, let consider a "Peak" and a "Cutoff

peak". In general, these profiles are both characterized by the same patterns, e.g.,

peak or flat curves. The difference between a peak and a cutoff peak is how these
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Figure 5.17 – Results of the five replicates for the 10 best BILSTM settings. The bars
represent the standard deviations. L.R stands for learning rate, NER for non error rate, N
neur for number of neurons in the first hidden layer

patterns are placed through the profile. Therefore, it is important to "remember"

how the different, and even distant, parts of a profile are organized. The (BI)LSTM

networks are expected to handle this kind of task.

The general architecture for all the recurrent models tested during the optimization

included the following layers: an input layer, (BI)LSTM layer(s), a fully connected layer

and an output layer. This architecture implies the tuning of the hyperparameters listed

in table 5.4. In particular, two values of initial learning rate were considered (0.001

and 0.01). The input layer is made of 50 neurons (i.e., the length of the normalized

profiles), and this was kept constant across all the tested networks. One, two or three

stacked layers of (BI)LSTM followed by one fully connected layer have been tested.

The same layer type has been used for each layer, therefore no combinations of LSTM

and BILSTM layers have been tested in multiple layer models.

The number of neurons in the first layer was set to 16 or 32 or 48, and the number

of neurons was halved each time for each successive (BI)LSTM layer, i.e., the number

of neurons for the second and third layer was half and a fourth of the neurons in the

first layer, respectively. To avoid overfitting, a dropout of 0.25 (Srivastava et al., 2014)

as a regularization term for the first layer has been introduced, but unregularized
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Table 5.4 – Parameters tested and selected for the BILSTM network.

Parameters Option 1 Option 2 Option 3 Selected Option
Initial learning
rate 0.001 0.01 0.001

Neurons Type LSTM BILSTM BILSTM
Dropout 0 0.25 0.25
Solver Adam RMSprop RMSprop
Activation
function ReLu tanh sigmoid tanh

Num of
(BI)LSTM layers 1 2 3 3

Num of neurons
in the first layer 16 32 48 48

networks were considered (i.e., dropout equal to 0).

The number of neurons in the fully connected layer is the same as the last (BI)LSTM

layer. Three different activation functions have been considered: ReLU, sigmoid and

hyperbolic tangent. The output layer with a softmax function (four neurons, one for

each class) has been kept constant across all the models. Two optimization algorithms

or solvers have been tried: Adam and RMSProp (Ruder, 2016). A preliminary

optimization of the hyperparameters has been performed by means of a full grid search

considering the combination of all the parameters listed in table 5.4, for a total of

432 tested networks. The ten architectures with the best classification performances

(highest NER on the validation set, see next paragraph) have been selected. Since

networks are randomly initialised, each network was replicated five times to test its

stability. Since no significant differences have been found across the five replicas of

the same architecture (figure 5.17), the overall best model considering the NER in

validation has been selected. The final parameters for the selected model are shown in

table 5.4.

5.2.6 KNN

The kNN algorithm is a benchmark classification method (Altman, 1992). A sample is

classified according to the most represented class among the k nearest training samples

(neighbors), thus, kNN is also known as a local classification approach. The Euclidean

metric has been used for the distance calculation. The optimal number of neighbors k
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has been optimized testing different values from 1 to 10, 20, 30, 40 and 50: the optimal

k value (4) was found maximizing the NER on the validation set.

5.2.7 Classification measures

The classification performances have been evaluated by means of confusion matrix

and derived measures: Non-Error Rate (NER), precision, sensitivity and ROC curves.

Details are given in chapter 4

5.2.8 Software

The PARAFAC2 models have been calculated with PARADISe (Johnsen et al., 2017)

version 5.8, available at (http://models.life.ku.dk/paradise).

All the classification measures have been calculated by means of routines in

the classification toolbox for MATLAB (Ballabio and Consonni, 2013), available

at https://michem.unimib.it/download/matlab-toolboxes/classification-toolbox-for-

matlab/ (Nov 2, 2021).

The computations, optimization, training and test of the models have been per-

formed in MATLAB (MATLAB 2021a, The MathWorks, Inc. Natick, Massachusetts,

United States). The deep neural networks have been calculated with the MATLAB

deep network designer toolbox.

5.2.9 Results

The (BI)LSTM, CNN, and kNN classification models were trained with the labeled

profiles from the training set and then used to predict profiles included in the external

test sets. Neural network hyperparameters and the number of k nearest neighbors

were optimized by maximizing the number of correctly classified profiles included in

the internal validation set.

The classification performances obtained on the training, validation and test sets

are reported in table 5.5. NER values are always higher than 85% for all the models
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when looking at training, validation and test sets. The kNN model has the highest NER

considering both training and validation sets, which might be expected, considering

the model structure, the low number of neighbors and how the two sets have been

produced. However, the kNN model shows the biggest variation in NER values between

the training set and the other sets, in particular the NER value decreases 3% and 7%

for the validation and the test set, respectively.

The deep learning models are characterized by more stable results between the

training and the internal validation set. For the CNN model the variation of the NER

for the training set is -0.5% compared to the validation and +2.6% compared to the

test set. Considering the BILSTM model, the difference between the training set NER

values is -0.2% compared to the internal validation set and -0.2% compared to the

test set, respectively. Overall, the performances of the models are satisfactory and

the results suggest that all the models achieved excellent classification performances,

implying that the classification strategies are appropriate for the task.

In order to further compare the classification performances of the three models

on the test set, the aggregated confusion matrix, the NER, the class sensitivities and

precisions of the three models achieved on the test set have been considered, as shown

in figure 5.18. All the values for these classification measures are listed in table 5.5.

In particular, the aggregated confusion matrix derives from the combined analysis of

the classification results by the three models. In this plot, the agreement across the

three models is reported in a particular representation of a confusion matrix with a

Venn-like diagram.

A given profile can be classified as belonging to a given class by i) all the three models

(one possible combination), ii) two models (three possible combinations), or iii) just a

single model (for a total of three models), for a total of seven possible combinations.

Each profile was assigned to one or more of these combinations according to the

concordance/discordance of the predictions with respect to the experimental class.

In the ixj cell of the aggregated confusion matrix, the number of profiles from i-th

class predicted as class j is represented in a graphical way, considering the seven

combinations mentioned above. It means that, for each cell, seven numbers, one for
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Figure 5.18 – Aggregated confusion matrix for the three approaches (CNN, BILSTM
and kNN in blue, red, and white, respectively) calculated for the test set. Details about
construction and interpretation are given in the text (Results section). The size of the
areas is proportional to the logarithm of the number of profiles. Sensitivities, precisions
and NER for each class are also reported as bar plots.

each combination, should be given.

So, for instance, the 1x1 cell of the aggregated confusion matrix reports how many

profiles labelled as "Other" were correctly predicted as "Other" by: (1) all the models,

i.e., all concordant predictions), (2) CNN and BILSTM models, (3) BILSTM and kNN

models, (4) kNN and CNN models, or uniquely by (5) CNN or (6) BILSTM or (7)

kNN. In order to ease the visualization, within each cell of the aggregated confusion

matrix seven regions have been defined, one for each of the possible combination. In

particular, for each cell, the following areas were defined:

1. a black central area that represents the concordant predictions across all the

models;

2. a purple area for the CNN and BILSTM models concordant predictions;

3. a pink area for the BILSTM and kNN models concordant predictions;
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4. a light blue area for the kNN and CNN models concordant predictions;

5. a blue area for CNN predictions;

6. a red area for BILSTM predictions;

7. a white area for kNN predictions;

The seven areas have been logarithmically rescaled according to the number of the

corresponding profiles to help the visual inspection. If all the models give perfect

predictions, only the black areas on the main diagonal would be shown in the aggregated

confusion matrix. The actual number of profiles for each area is reported in figure

5.19.

From the aggregated confusion matrix represented in figure 5.18, it is possible to see

that the black areas have the maximum extent on the diagonal. This suggests that

most often the models classify the profiles consistently to each other and that the

predictions are correct. This is supported also by the high NER values of the three

models reported in the right bottom square (figure 5.18 cell 5x5, table 5.5), where no

significant differences can be noticed for the three models.

Considering the sensitivity for the class "Other", the CNN and the BILSTM models

perform better compared to the kNN model (cell 1x5, figure 5.18). This can be

explained looking at the extent of the pink area in cell 1x1 (figure 5.18) indicating that

the CNN and the BILSTM correctly classify many more profiles belonging to this class

compared to kNN. It means that the same profiles are assigned to a wrong class by the

kNN model. The difference between CNN and BILSTM in terms of sensitivities is due

to the set of profiles correctly classified uniquely by the CNN model (blue area in cell

1x1 figure 5.18). Looking at the aggregated confusion matrix, it can be seen that most

of the misclassified "Other" profiles by the kNN and BILSTM models are assigned to

the class "Peak", as suggested by the greater extent of the white, pink and red areas

in the cell 1x2 (figure 5.18). In most of the cases, the profiles resemble a peak but do

not fulfill the criteria applied during the labeling. For instance, visually inspecting

these profiles show some spikes beyond the 0.1 threshold in addition to the main peak.

This could suggest that the CNN is most sensitive to the noise of the profiles, while

kNN model is the least sensitive with the BILSTM somewhere in the middle between
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the other two methods.

Looking at the precision for the class "Other" obtained by the three models (cell 5x1

figure 5.18), it is possible to notice that the trend is the opposite compared to the

sensitivities. In this case the kNN achieved the best result, while the CNN the worst

and still the BILSTM in the middle. The smaller precisions for the two deep learning

methods are reflected in the aggregated confusion matrix. The great extent of the blue,

pink and red areas in the 2x1 and 3x1 cells in figure 5.18 suggests that BILSTM and

CNN tend to classify as "Other" more profiles belonging to different classes compared

to the kNN model. Visually inspecting these profiles, it has been noticed that in

most of the cases there is some residual noise, and the misclassification can be related

to that. This observation supports the hypothesis that the deep leaning models are

overestimating the impact of noise for the classification of the profiles while the kNN

is less sensitive to this aspect. Overall, the BILSTM seems the more balanced model.

This different behavior of the models influences the results for the remaining classes,

in particular for the "Peak" class. In this case, the kNN has the greatest sensitivity,

followed by BILSTM and CNN (cell 2x5, figure 5.18, table 5.5). This is due to the

profiles labelled as "Peak" but classified as "Other" by the CNN and BILSTM models

(blue, purple and red areas, 2x1 and 3x1 cells, figure 5.18), as discussed before. It

means that the kNN model can correctly classify the highest number of profiles labelled

as "Peak" compared to BILSTM and CNN. The difference of the sensitivities for the

‘Peak’ class between the kNN and the CNN is 6.1%. Looking at the precisions for the

class "Peak" (cell 5x2, figure 5.18), the trend is the opposite: the CNN has the best

precision and the kNN the worst. The white, light blue and pink areas, related to

the classifications of the kNN model, are the more extended in the cells 1x2 and 3x2,

indicating that kNN tends to assign to the class "Peak" profiles belonging to different

classes. In particular, the difference of precisions between the CNN and kNN is 19%.

This can be explained considering the criteria adopted during the labelling, where a

small difference can discriminate between a class or another. Such small differences

between different classes can be problematic to detect for a local model as kNN.

Considering the class "Cutoff peak", the BILSTM model has the highest sensitivity

and the CNN the smallest one (cell 3x5, figure 5.18). As for the class "Peak", the
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Figure 5.19 – The number of profiles included in the seven areas defined for each cell of
the aggregated confusion matrix considering the test set.

sensitivity of the CNN model is lower compared to the other models, because it tends

to classify more profiles as "Other". This tendency increases the precision for the

CNN model which is the highest also for this class. However, the differences among

the three models for this class are less evident and the performances are satisfactory

for all the models.

All the three models perform excellently considering the class "Baseline", both in

terms of sensitivities and precisions (cells 4x5 and 5x4, respectively, figure 5.18, table

5.5). Looking at the aggregated confusion matrix, the number of profiles classified

as "Baseline" from all the three models and actually belonging to this class is 3995

(black area, cell 4x4 figure 5.18 and figure 5.19 A) over a total number of 4056 profiles

labelled as "Baseline" in the test set (table 5.3). Thus the 98.4% of the "Baseline"

profiles have been correctly classified by all the classification models, moreover almost

all the misclassifications (except for only 4 false attributions to peaks by kNN) are due

to assignations to the class "Other", i.e. baselines profiles are not confounded with
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Figure 5.20 – Profiles in the test set misclassified by all the tested models; the red line
highlights the 0.1 threshold. The normalized profiles are shown.

peaks or cutoff peaks, further indicating the excellent performances for this class.

A last consideration is about the profiles misclassifed by all the models. Taking

advantage of the aggregated confusion matrix, the profiles misclassified by all the

models were extracted. These correspond to the profiles represented in the black

areas in the off-diagonal cells for a total of 310 profiles (2.02% of all the profiles in

the PARAFAC2 test set). All the profiles are shown in figure 5.20. For the cells 3x4

(experimental class: ‘Cutoff peak’; predicted: "Baseline") 4x2 (experimental class:

"Baseline"; predicted: "Peak") and 4x3 (experimental class: "Baseline"; predicted:

"Cutoff peak") no misclassified profiles from all the models were found. In all the

other cases, it can be seen that misclassifications mostly depend on borderline profiles

(i.e., profiles at the edge between two classes) and by errors in the labelling phase. For

instance, in the most representative group corresponding to the cell 3x1 (experimental

class: "Cutoff peak"; predicted: "Other") the profiles do not clearly show the inflection

point or the tail is slightly over the 0.1 threshold. Extending the same trend also
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for the validation and the training sets, some underestimation of the classification

performances can be assumed.

5.2.10 Computational time

Table 5.6 – Computational time for the classification of the internal validation set.

Model
Time

(seconds)

CNN 4.34

BILSTM 2.43

kNN 64.3

Another result concerns the computational time required by the different models to

perform the classification on the profiles of the internal validation set (table 5.6). The

calculation has been performed with an Intel® CoreTM i7-6950X CPU processor with

a dedicated RAM of 32 GigaBytes. The time needed by CNN and the BILSTM models

are comparable, the slightly longer running time for the CNN model can be explained

by the greater number of hidden layers. The kNN model requires significantly more

time compared to the other two models, i.e., it is about 20 times slower. The difference

in time required by the models to perform the classification task is important in this

context, considering that the analysis of a full GC-MS dataset by means of PARAFAC2

would produce a much higher number of profiles.

5.2.11 ROC curves

In order to further evaluate the classification approaches, the ROC curves for the class

’Peak’ from the developed models with the convolutional neural network described in

Risum and Bro, 2019 have been compared. The comparison is based on the respective

test set. The curves are shown in figure 5.21. Since these results are based on different

test sets, the comparison is qualitative with the aim to verify the influence of the data

more than the classification performance.

Considering the kNN model, the ROC curve has been calculated considering the

posterior probability of a new sample to belong to a given class considering the classes
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Figure 5.21 – Comparison of the ROC curves for the ‘Peak’ class of the deep convolutional
net from Risum and Bro, 2019 and the proposed CNN, BILSTM and kNN models. The
curves are calculated on the respective test sets.

of the k nearest neighbors.

The ROC curve for the deep neural network considering the ‘Peak’ class in Risum

and Bro, 2019 was already next to the top left corner, nonetheless the curves for the

three models trained on our data show a further improvement. The AUC reported in

Risum and Bro, 2019 was already high, reaching 0.95, however both the CNN and the

BILSTM models have an even higher value, 0.96 and 0.97 respectively, suggesting that

the adopted criteria for the labelling of the profiles make possible a slight increase of

the classification performances. The AUC for the ‘Peak’ class is 0.95, slightly lower

compared to the CNN and the BILSTM models and also considering the previous

result. The AUC value for all the classes for the CNN, BILSTM and kNN models is

reported in table 5.5.

5.2.12 Conclusions

With the purpose of improving the performances of the CNN proposed in Risum and

Bro, 2019, more than 170000 estimated elution profiles have been labelled according to
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semi-quantitative criteria, specifically proposed to set a first, preliminary standard for

further future developments in this field. The profiles have been used to train again

the same CNN architecture and to train two new models based on RNN and KNN.

The models have been trained to discriminate among four different classes: ‘Peak’,

‘Cut off peak’, ‘Baseline’ and ‘Other’.

The performances of the models have been analyzed by means of an aggregated

confusion matrix where the classification results of the three models have been merged.

This allowed tracking of the common and non-common classifications, resulting in

a deeper insight of the different model trends. Overall, all the three models seem

effective. However, there are hints suggesting that the two models based on a deep

neural network are ‘learning’ the underlying criteria applied during the labelling process

from the data, while the kNN model seems less robust compared to the other two.

Overall, the thorough analysis of the results obtained considering the test set allowed

the characterization of the three models, where in general the CNN has the highest

precisions and tends to classify more profiles as ‘Other’, the kNN has the highest

sensitivity but fails to properly classify borderline profiles and the BILSTM seems as a

compromise between the other two methods. Moreover, the prediction times indicate

the two deep learning approach as significantly faster compared to the kNN model.

Weighing up all these aspects, the kNN model could be less advisable.

The comparison of the developed models with a previously published deep learning

model suggests that it could be possible possible to further improve the classification

of elution profiles resolved by PARAFAC2.
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Chapter 6

Conclusions and future perspectives

This thesis aims to present and explain a new approach for the identification and

quantification of compounds from GC-MS data obtained by untargeted metabolomics

experiments.

To introduce the scientific problem of this thesis and the solutions proposed, an

overview of the experimental settings, the nature of the resulting data and some of the

most common approaches applied by the scientific community to extract the chemical

information from GC-MS data have been described.

Nowadays metabolic profiling is an established and widely applied approach. How-

ever, the translation of the experimental data into useful information has been indicated

several times as the major bottleneck in metabolomics experiments, strongly limiting

the full exploitation of the analytical capacity of modern instruments.

In the opinion of the author, this is due to the quite univariate approaches applied

in most of the approaches developed for the identification and quantification of the

chemical compounds. The data obtained from the analysis of the samples are often

analyzed independently of each other. Moreover, each measured mass spectrum is

analyzed individually, trying to assess if it describes chemical information.

The identification of the relevant spectra and the estimation of the area under the

chromatographic peaks is based on a consolidated theory in the field of chromatography

and mass spectrometry. However, the theory was developed considering samples with
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much less complexity than those analyzed in metabolic profiling experiments. Consid-

ering the complexity of the measured signals, it can be argued that more sophisticated

tools are needed to process the data.

Here chemometrics could play a fundamental role. As shown throughout the

thesis, the application of multivariate modeling approaches, such as PARAFAC2, can

impressively improve the detection of compounds identified from GC-MS data. It has

been shown that PARAFAC2 can extract the individual contributions of the different

signals resulting in an accurate identification and relative quantification of the chemical

compounds detected by the instruments.

However, despite its effectiveness, PARAFAC2 is not a common choice for the analysis

of GC-MS data. It is difficult to clearly identify the reasons why, but the need of some

knowledge of command line software, such as MATLAB, the language mostly used

to implement PARAFAC2, can be recognized among them. Moreover, the modeling

results should be visualized and evaluated, and also this can be problematic for less

skilled users. Concerning the first point, PARADISe was a major breakthrough to solve

this issue, introducing a dedicated GUI but still it requires an expertise in PARAFAC2

modeling to get the final peak table.

The approach proposed in this thesis aims to fill this gap. AutoDise has been designed

as an expert system for the automatic handling of the calculation, screening and

selection of PARAFAC2 models, in order to automatically extract the components

describing the resolved chromatographic peaks, i.e. the pure signals describing the

chemical compounds.

A list of components to be included in the peak table is also proposed to the user,

selected after a careful screening of the calculated models, applying several diagnostic

tools. The screening performed by AutoDise allows the user to focus on a small subset

of components, reducing the efforts required in the preliminary phases. A case study

was reported to test the efficacy of AutoDise. AutoDise and a traditional software for

the analysis of GC-MS data were compared. The results showed that the number of

molecules identified by AutoDise is doubled compared to traditional software.

A crucial aspect in this context is the appropriate visualization of the results. Vi-

sualization is an essential aspects in chemometrics, and therefore another important
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part of this project was the development of a dedicated GUI, in order to provide an

intuitive platform for visual analysis of the solutions given by AutoDise. We think it

is of primary importance to make the tools developed accessible also to researchers

belonging to other research fields.

Overall, the performance of AutoDise is more than satisfactory, but there is still

room for improvement. A first improvement was carried out by means of the develop-

ment of a new ANN model for the identification of the resolved elution profiles. This

aspect has been selected given the importance of the CNN developed by (Risum and

Bro, 2019) in the AutoDise algorithm. To this end, a thorough manual labeling of more

than 170,000 resolved profiles has been performed and new deep learning approaches

have been tested showing a further improvement of the classification performances.

However, many other developments could be added in the future, in particular for the

interval definition step and the selection of the components.

The intervals are defined in order to cover the whole chromatogram. The aim is to

extract all the chemical information. However, defining too many intervals leads to

a dramatic increase in the time required for the calculation of the models. Thus, a

more rational definition of the intervals would help to reduce the calculation time

extracting the same information. In this context, one possible way would be to couple

the alignment with the interval definition. The alignment phase can be used to identify

the relevant regions for the definition of the intervals reducing at the same time the

total number of intervals.

Another point that is worth exploring is to integrate other diagnostics for the selection

of the components. Among the different possibilities, the more urgent to take into

account is the CORCONDIA diagnostic, that has been indicated as an important and

reliable parameter for the analysis of PARAFAC2 models, and that is not considered

for the screening of the components in AutoDise so far.

It is also important to compare the results of the algorithm described in this thesis

with the most applied approaches such as XCMS and MZmine, in order to test the

advantages and the weaknesses. I think that in this context an important part would be

played by simulated data. To the best of my knowledge, approaches for the simulation

of metabolomics GC-MS data has not been proposed. The development of methods
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able to simulate the same complexity as in real experimental data would be extremely

useful for a more robust comparison of the available software.

Of course, the further developments and improvements of the algorithm and the

usability of the GUI could involve many different aspects. However, these tools are

expected to be useful to the scientific community. Thus, it would be extremely helpful

to get feedback by the users in order to better understand the features to modify or to

implement.

A final consideration about this last point is that going through the literature, it

can be noticed that the experimental community and the chemometric community, in

particular concerning the analysis of GC/LC-MS data, are not communicating much.

In many reviews describing the most advanced tools for the identification and/or

quantification of chemical compounds for GC-MS data, chemometrics tools such as

those described in the present thesis are usually not included. In the opinion of the

author, more attention should be placed to better link the experimental groups with

the chemometric ones, and this thesis, hopefully, is a little part of this effort.
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Appendix

a Description of autodise-table.xlsx file

Details about the .xlsx file generated by the AutoDise GUI are given in this section.

First sheet

In the first sheet, called "Overview" general information is reported :

Paradise version (currently 6.0.0)

Export Date The day the file has been generated

Number of samples

Mass spec. range Range of the m/z in the raw data.

Retention time range (min)

Preprocessing Indicates whether the data have been aligned

Interval Selection Manual or auto, depending on the user selection

Modelling Model applied to resolve the data

Chemical Identification Description of the second sheet contents

Relative Concentrations Description of the third sheet contents

Top NIST hits Description of the forth sheet contents
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Resolved Mass Spectra Description of the fifth sheet contents

Interval Details Description of the sixth sheet contents

Second sheet

In the second sheet, called "Relative concentrations", the estimated relative concentra-

tion are reported. It is organized as a table:

First row Headers of the columns in the table

First column "Compound name" Name of the identified molecule.

Second column "Match quality" Quality of the match of the resolved spec-

tra with the NIST library.

Third column "Compound ID" ID of the corresponding compound.

Fourth column "Interval ID" Interval (indicated with the number) from

where the compound was resolved.

Fifth column "Est. Retention Time (min)" Retention time of the com-

pound

Sixth column - Last column "Samples #" From the sixth to the last col-

umn the relative concentration among the samples is reported. Each column

corresponds to a sample.

Second row - Last row Each row corresponds to one of the compounds identified

from AutoDise

Third sheet

In the third sheet, called "Resolved Mass Spectra", the estimated mass spectra of each

identified compound are reported. It is organized as a table:

First row Headers of the columns in the table

First column "Compound name" Name of the identified molecule.

Second column "Match quality" Quality of the match of the resolved spec-

tra with the NIST library.
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Third column "Compound ID" ID of the corresponding compound.

Fourth column "Interval ID" Interval (indicated with the number) from

where the compound was resolved.

Fifth column - Last column "mz #" From the fifth to the last column the

estimated values for each mz are reported. Each column corresponds to a

specific m/z.

Second row - Last row Each row corresponds to one of the compounds identified

from AutoDise

Fourth sheet

In the fourth sheet, called "Top NIST hits", the two best hits for each identified

compound are reported. It is organized as a table:

First row Headers of the columns in the table

First column "Compound name" Name of the identified molecule.

Second column "Match quality" Quality of the match of the resolved spec-

tra with the NIST library.

Third column "Compound ID" ID of the corresponding compound.

Fourth column "Interval ID" Interval (indicated with the number) from

where the compound was resolved.

Fifth column "Est. Retention Time (min)" Retention time of the com-

pound

Sixth column "Hit 1: Compound" Putative compound with the best hit

Seventh column "Hit 1: Structure" Molecular structure of the putative

compound

Eighth column "Hit 1: Match Factor"

Ninth column "CAS" CAS number of the putative compound

Tenth column "Hit 1: Mw" Molecular weight of the putative compound

Eleventh column - last column Equal to Fifth column - Tenth column but

for the second best hit.
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Second row - Last row Each row corresponds to one of the compounds identified

from AutoDise

Fifth sheet

In the fifth sheet, called "Intervals details", diagnostics about the models where

compound(s) have been extracted are reported. It is organized as a table:

First row Headers of the columns in the table

First column "Interval ID" Interval (indicated with the number) from where

the compound was resolved

Second column "Model Components (max. size)" Number of components

included in the model

Third column "Chemical Components" Number of components extracted

by the model

Fourth column "Num. Iterations" Number of iterations to fit the model

Fifth column "Compute Time (sec.)" Time to fit the model

Sixth column "Core Consistency"

Seventh column "SSTotal" Residuals value

Eighth column "VarExpl" Explained variance by the model

Second row - Last row Each row corresponds to one of the compounds identified

from AutoDise
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