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“...when the brain is released from the constraints of reality, it can generate any
sound, image, or smell in its repertoire, sometimes in complex and "impossible"
combinations.”

Oliver Sacks
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Abstract

Cecile VALSECCHI

Advancing the prediction of Nuclear Receptor modulators
through machine learning methods

Nuclear receptors are transcription factors involved in processes critical to
human health and are a relevant target for toxicological risk assessment and
the drug discovery process. Computational models can be a useful tool (i) to
prioritize chemicals that can mimic natural hormones and thus be endocrine
disruptors and (ii) to identify new possible lead for drug discovery.

Therefore, the main goal of this project is to study potential interactions
between chemicals and nuclear receptors, with the dual purpose of devel-
oping in silico tools to search for new modulators and to identify possible
endocrine disrupting chemicals.

After creating an exhaustive collection of nuclear receptor modulators,
we applied machine learning methods to fill the data gap and prioritize mod-
ulators by building predictive models. In particular, modeling strategies in-
cluded multi-tasking machine learning algorithms to investigate the complex
relationships between chemicals and multiple nuclear receptors.
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Chapter 1

Introduction

1.1 Nuclear Receptors

Deoxyribonucleic acid (DNA) is a double helix of two polynucleotide chains
carrying genetic instructions (i.e., genes) for the development, functioning,
growth and reproduction of all known organisms and many viruses. A tran-
scription factor is a protein that regulate the expression of specific genes by
binding to a specific DNA sequence. The biggest family of human transcrip-
tion factors is constituted by nuclear receptors (NRs) whose action depends
on ligand binding, in other words to explicate their action a formation of
ligand-receptor complex is needed.

1.1.1 Nuclear Receptors modulation

There are several types of modulators of nuclear receptors, including spe-
cific ligands and inhibitors of interactions of nuclear receptors with various
proteins related to the transcription (Gronemeyer, Gustafsson, and Laudet,
2004; Mangelsdorf et al., 1995). This thesis will focus only on NRs ligand
modulators, which can modulate the NRs activities in different ways. Usu-
ally they bind directly to the receptor in a so-called binding pocket (ortosteric
binding) or on the external surface (allosteric binding) (Christopoulos, 2002).
The formation of a ligand-receptor complex (LR) is an equilibrium process
(Ariens et al., 1954). Ligand (L) binds to the receptor (R) and dissociates from
it according to the following equation. The brackets denote concentrations.

[L] + [R]
Kd−→ [LR] (1.1)

The binding causes conformational changes and, thus, triggers a biologi-
cal effect (Germain et al., 2006). Depending on the resulting activity a binder
can be identified as agonist or antagonist. In the former case the formation
of the ligand-receptor complex activates the transcription to produce a bio-
logical response (Germain et al., 2006). On the contrary, by binding to the
receptor, an antagonist blocks or dampens a biological response. Competi-
tive antagonists bind to receptors at the same binding site as the endogenous
ligand or agonist, but without activating the receptor. In this case the inhi-
bition is the result of the competition for the same binding site on the recep-
tor. In other words, once bound, a competitive antagonist will block agonist
binding (Germain et al., 2006). A non-competitive antagonist may bind to an
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allosteric site of the receptor, or irreversibly bind to the active site of the re-
ceptor, inducing a conformational change and, thus, preventing the agonist
binding (Burris et al., 2013).

The distinction between agonism and antagonism is multi-faceted. For
example the so-called partial agonists can act as a competitive antagonist
in the presence of a full agonist by exerting a lower expression occupying
the binding site. In addition, some modulators display tissue and/or target
gene specificity in terms of their agonist, antagonist, or inverse agonist ac-
tivity (i.e., selective receptor modulators) (Burris et al., 2013). Some small
molecules, can be agonist in a tissue and antagonist in an other tissue. Most
studied examples include Estrogen receptor agonists/antagonists (ERAAs)
(Begam, Jubie, and Nanjan, 2017).

Nowadays it is possible to rapidly identify NRs ligands throughout spe-
cific experimental tests. In particular, high-throughput screening (HTS) con-
sists in quickly and simultaneously testing of thousands of compounds using
a battery of in vitro assays. In vitro HTS assays are faster and more cost-
effective than traditional in vivo toxicity testing, and they avoid the ethical
concerns associated with animal tests (Rotroff et al., 2013).

HTS assays can be divided broadly into two categories: biochemical as-
says and cell-based assays. Biochemical assays are direct and specific to the
target of interest while cell-based assays assess the efficacy of compounds in
a cellular environment. Although the former provides robuster and more re-
producible results, the latter takes into account cellular-related requirements
such as cellular cofactors, membrane permeability, off-target effects and cy-
totoxicity (An and Tolliday, 2010). Examples of biochemical assays include
fluorescent polarization of a probe linked to a specific ligand, nuclear mag-
netic resonance or surface plasmon resonance investigate the direct interac-
tion between ligand and receptor and consequent conformational changes
(Ishigami-Yuasa and Kagechika, 2020). On the other hand, cell-based assays
are affected by the choice of the biological system (primary cell, native, or
engineered cell-line, model organism); the type of approach (functional, re-
porter gene) and the assay readout modality (uniform well readout or high
content) (An and Tolliday, 2010).

Depending on the assays different types of resulting experimental read-
outs exist, the most used are: the half maximal concentration on the dose-
response curve for inhibition or effect (IC50 and EC50) and the dissociation
and inhibition constants (Kd and Ki). IC50 and EC50 are the concentration of
ligand causing 50% of displacement or response (Sebaugh, 2011). Dissocia-
tion constant Kd is an equilibrium constant that measures the dissociation of
a complex into its components equilibrium as in Equation 1.1. The inhibitory
constant Ki, on the other hand, describes the binding affinity between an
inhibitor and its corresponding protein, which essentially also represent a
dissociation constant. The difference between Kd and Ki is that Kd is a more
general, all-encompassing term, whilst Ki is more narrowly used to indicate
the dissociation equilibrium constant of the protein-inhibitor complex (Berg,
Tymoczko, and Stryer, 2002).

A dose-response curve describes the magnitude of a biological response
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(Y-axis) as a function of exposure to a certain amount of a chemical (X-axis).
Figure 1.1 shows an example of a dose-response curve.

%
eff

ec
t

Tamoxifen concentra�on [nM]

FIGURE 1.1: Example of dose-response curve.

1.1.2 Nuclear Receptors classification

The human NRs superfamily comprises 48 members which are evolutionar-
ily and structurally related. In spite of the remarkable structural similarity,
these proteins regulate an extremely large number of biological processes.
The greatest homology is preserved in the amino acid sequence of the DNA-
binding domain (C) and the ligand-binding domain (E) (Figure 1.2c) (Man-
gelsdorf et al., 1995). These C and E domains are responsible for the associ-
ation of the transcription factor with specific DNA sequences and the bind-
ing of small ligands, usually of lipophilic nature, respectively. A third, non-
conserved N-terminal domain named the regulatory domain (A/B) shows
variable length and sequence in the different family members and is recog-
nized by coactivators and/or other transcription factors. The ability of the E
domain to activate transcription is controlled by the C-terminal helix 12, also
termed F (Mangelsdorf et al., 1995).

In the 1950s, it was thought that steroid hormones enter the cells by sim-
ple diffusion through the plasma membrane and trigger series of metabolic
oxidations and reductions. At the IV International Congress of Biochemistry
in Vienna (1958), a new concept of hormone receptor arised when Dr. El-
wood Jensen proved that tritiated estrogens bind to a receptor within the cell
without chemical changes (Jensen et al., 1968). Then, this hormone-receptor
complex must translocate to the cell nucleus and regulates the expression of
specific genes (Mazaira et al., 2018).

The estrogen receptor (ER) was indeed the first member of the NR fam-
ily to be identified biochemically (Jensen, 1962). Since then, study on NRs
have increased leading to their identification as a superfamily of transcrip-
tion factors, and steroid receptors were grouped as a subfamily (Mazaira et
al., 2018).
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The group of non-steroidal receptors was also added to the family com-
prising the thyroid hormone receptors (TR), the retinoic-acid receptors (RAR).

A group of receptor whose endogenous ligands were unknown, were
grouped as the orphan receptor subfamily.

Nuclear receptor genes are encoded and expressed from the simplest to
the most complex organisms of the animal kingdom. More than 900 nuclear
receptors genes have been identified in different animals, and it appears that
the number of receptors increases with the functional complexity of the or-
ganisms, reaching forty-nine members in mammals. However, nuclear re-
ceptors are absent in fungi, plants and also in the closest known relatives
of metazoans, i.e. eukaryotes of the Choanoflagellatea class. Hence, it is
thought that these receptors appeared on the scene of evolution about 635
million years ago with the first metazoans and played a key role during the
Cambrian explosion of life forms nearly 540 million years ago (Mazaira et al.,
2018).

The nuclear receptor superfamily can be generally divided into the fol-
lowing four groups of unequal size based on their DNA-binding properties
and dimerisation preferences (Novac and Heinzel, 2004):

• Type I: ligand-receptor complex formation take place in the cytosol by
the dissociation of heat shock proteins. Then the receptor homodimer-
izes, translocates into the nucleus and binds to specific sequence of
DNA (i.e., response elements). Type I nuclear receptors include steroid
hormone receptors (Figure 1.2a).

• Type II: receptors located in the nucleus regardless of the ligand binding
status, which bind to DNA as heterodimers (usually with RXR)(Figure
1.2b).

• Type III: receptors similar to type I receptors which bind to DNA as
homodimers. However, type III nuclear receptors, bind primarily to
direct repeat instead of inverted repeat response elements.

• Type IV: receptors which bind either as monomers or dimers, but only
a single DNA binding domain of the receptor binds to a single half site
response element.

Furthermore, a new phylogeny-based nomenclature approved by the Nu-
clear Receptor Nomenclature Committee (NRNC) has been proposed for nu-
clear receptors. This nomenclature system is based on the multiple alignment
procedures, phylogenetic tree reconstruction methods and other evolution-
ary implications, and subdivides the nuclear receptor superfamily into seven
subfamilies which are numbered from 0 to 6. The phylogenetically closest
members of each subfamily are combined into groups designated by capi-
tal letters arranged in the alphabetical order and the individual genes within
each group are defined by Arabic numerals as reported in Table 1.1.
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FIGURE 1.2: (a) Type I steroid nuclear receptors are synthesized
in inactive forms associated with heat-shock protein (HSP)
complexes in the cytoplasm. Direct hormone binding causes a
conformational change, dissociation from HSP complexes and
translocation into the nucleus. (b) Type II heterodimeric nu-
clear receptors bind constitutively to DNA with RXRs as obli-
gate partners. Ligand binding causes a conformational change,
dissociation of co-repressor complexes and recruitment of co-
activators. (c) Members of the nuclear receptor superfam-
ily have a common domain structure consisting of an amino-
terminal activation domain (A/B), a DNA-binding domain (C),
a hinge region (D), a ligand binding domain (E) and a carboxy-

terminal domain (F).

TABLE 1.1: Summary of 48 human nuclear receptors divided
according to the Nuclear Receptor Nomenclature Committee

(NRNC) in group and subgroup (Sub.).

Name Acronym NRNC Group Sub.
DAX DAX1 NR0B1 B 0
Short heterodimeric partner SHP NR0B2
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Thyroid hormone receptorα TRα NR1A1 A 1
Thyroid hormone receptor-β TRβ NR1A2
Retinoic acid receptor-α RARα NR1B1 B
Retinoic acid receptor-β RARβ NR1B2
Retinoic acid receptor-γ RARγ NR1B3
PPAR-α PPARα NR1C1 C
PPAR-δ PPARδ NR1C2
PPAR-γ PPARγ NR1C3
Reverse-Erb-α REV-ERBα NR1D1 D
Reverse-Erb-β REV-ERBβ NR1D2
Retinoic acid-related orphan-α RORα NR1F1 F
Retinoic acid-related orphan-β RORβ NR1F2
Retinoic acid-related orphan-γ RORγ NR1F3
Farnesoid X receptor-α FXRα NR1H4 H
Farnesoid X receptor-β FXRβ NR1H5
Liver X receptor-α LXRα NR1H3
Liver X receptor-β LXRβ NR1H2
Vitamin D receptor VDR NR1I1 I
Pregnane X receptor PXR NR1I2
CAR NR1I3 NR1I3
Hepatocyte nuclear Factor-4-α HNF4α NR2A1 A 2
Hepatocyte nuclear Factor-4-γ HNF4γ NR2A2
Retinoid X receptor-α RXRα NR2B1 B
Retinoid X receptor-β RXRβ NR2B2
Retinoid X receptor-γ RXRγ NR2B3
Testicular Receptor 2 TR2 NR2C1 C
Testicular Receptor 4 TR4 NR2C2
TLX TLX NR2E1 E
PNR PNR NR2E2
COUP-TFα COUP-TFα NR2F1 F
COUP-TFβ COUP-TFβ NR2F2
COUP-TFγ COUP-TFγ NR2F6
Estrogen receptor-α ERα NR3A1 A 3
Estrogen receptor-β ERβ NR3A2
Estrogen-related receptor-α ERRα NR3B1 B
Estrogen-related receptor-β ERRβ NR3B2
Estrogen-related receptor-γ ERRγ NR3B3
Androgen receptor AR NR3C4 C
Glucocorticoid receptor GR NR3C1
Mineralocorticoid receptor MR NR3C2
Progesterone receptor PR NR3C3
Nerve growth Factor 1B NGF1-B NR4A1 A 4
Nurr-related Factor 1 NURR1 NR4A2
NOR-1 NOR-1 NR4A3
Steroidogenic Factor 1 SF-1 NR5A1 A 5
Liver receptor Homolog-1 LRH-1 NR5A2
Germ cell nuclear factor GCNF NR6A1 A 6



1.1. Nuclear Receptors 7

1.1.3 Nuclear receptors as targets in medicinal chemistry

Since NRs exert a key role in physiological processes such as homeostasis,
metabolism and development, they have become very attractive drug tar-
get. It is estimated that 15% of drug targets belong to the NRs superfamily
(Santos et al., 2017). Drugs that target nuclear receptors are widely used and
commercially successful also because of their roles in the development and
progression of several diseases, such as carcinogenesis for steroid hormones
receptors (Honma, Matsuda, and Mikami, 2021). In particular, the functional
status of Androgen Receptor (AR) is an important mediator of prostate can-
cer progression (Heinlein and Chang, 2004). Estrogen Receptor alpha (ERα)
and Progesterone Receptor (PR), have been shown to play a major role in
breast cancer development and progression (Kittler et al., 2013). Indeed, both
receptors are used to classify breast cancers and to predict response to spe-
cific therapies. To treat breast cancer, ERα is thus one of the main targets,
through inhibitors, such as tamoxifen.

In addition, nuclear receptors widely present in human tissues (Figure
1.3) such as Farnesoid X Receptor (FXR), Retinoid X Receptor (RXR), Glu-
cocorticoid Receptor (GR) and Peroxisome proliferator-activated receptors
(PPARs) are involved in the development and treatment of several diseases
including cancers, cardiovascular and metabolic diseases.

For example, bexarotene and alitretinoin (RXRs), fibrates (PPARα), and
thiazolidinediones (PPARγ) are drugs approved for treating cancer, hyper-
lipidemia, and type 2 diabetes, respectively (Kittler et al., 2013), (Dhiman,
Bolt, and White, 2018), (Dixon et al., 2021), (Shao et al., 2021).

Furthermore, Pregnane X Receptor (PXR) is used routinely to screen all
new drug candidates for potentially dangerous drug-drug interactions in the
pharmaceutical industry.

1.1.4 Nuclear receptors as targets for endocrine disruptors

Endocrine disrupting chemicals (EDCs) or endocrine disruptors are chem-
icals that are suspected to cause adverse effects in the endocrine system by
mimicking endogenous hormone activity and, therefore, interfering with their
synthesis, transport, degradation or action. Since Nuclear Receptors are in-
volved in several physiological processes, many EDCs interfere directly or
indirectly with them causing dysfunctional NRs signaling which often leads
to proliferative, reproductive, and metabolic diseases, including hormonal
cancers, infertility, obesity, or diabetes.

Human body is exposed to endocrine disruptors through different exoge-
nous sources including dietary lipids and vitamins, pharmaceutical agents,
plant-derived compounds and industrial byproducts (Hall and Greco, 2020).

The group of EDCs is highly heterogeneous and comprises compounds
that are often distantly related to endogenous ligands in terms of size or
chemical structure (Balaguer, Delfosse, and Bourguet, 2019). This is the case
of tribultyltin which, in spite of being structurally dissimilar from the en-
dogenous ligand 9-cis retinoic acid, can activate RXR at nanomolar concen-
trations. Tribultyltin occupies only a small part of the ligand binding pocket
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FIGURE 1.3: Maps of tissue with specific protein expression of
nuclear receptors. Nuclear receptors present in all the high-
lighted tissues (i.e., GR, PPARα, PPARγ, PPARδ and RXR) are

reported in grey. (Atlas, Accessed: 2021-06-10)

in comparison with 9-cis retinoic acid and is able to form a covalent bond
between its tin atom and the sulfur atom of conserved cysteine of the ligand
binding pocket (Toporova and Balaguer, 2020).

The most known effects of EDCs are related to steroid hormone receptors
(e.g. estrogen and androgen, thyroid hormone receptors). However, there
is emerging evidence that interactions of EDCs with other NRs, may coin-
cide with chronic diseases such as obesity and type II diabetes/metabolic
syndrome (Hall and Greco, 2020).

The pharmaceutical diethylstilbestrol (DES) provides an other example of
endocrine disruption. Prenatal exposure to DES, used in the 1970s to prevent



1.2. Machine learning and nuclear receptors 9

miscarriage in women with high risk pregnancies, was linked with the devel-
opment of vaginal cancer and its toxic effects were subsequently attributed
to its interaction with estrogen receptors (ERs) (Le Maire, Bourguet, and Bal-
aguer, 2010).

1.2 Machine learning and nuclear receptors

As mentioned before, nuclear receptors (NRs) are involved in fundamental
human health processes and are a relevant target for both medicinal chem-
istry and toxicological risk assessment. To help the identification of new pos-
sible drug candidate (hits) and the prioritization of chemicals that can be
EDCs, computational models can be a useful tool. The final aim of compu-
tational tools is to anticipate the properties of a compound with reasonably
accuracy before testing it in laboratory (Butler et al., 2018).

As a subfield of artificial intelligence (AI), machine-learning (ML) learn
the relationships that underlie a dataset by assessing a portion of that data
and building a model to make predictions. Machine-learning algorithms can,
thus, be viewed as searching through a large space of candidate models,
guided by training experience, to find a model that optimizes the perfor-
mance metric.

Machine-learning algorithms vary greatly. For example they differ by
the representation of the candidate model (e.g., decision trees, mathematical
functions, and general programming languages) or by the searching strategy
through the space of models (Jordan and Mitchell, 2015). Machine learning
can be viewed as a crossroad of computer science, statistics and a other disci-
plines involved in the automatic improvement over time, and inference and
decision-making under uncertainty.

The training of a machine-learning model may be supervised, unsuper-
vised or semi-supervised, depending on the learning task and the type and
amount of available data (Mitchell, 1997). In supervised learning, the train-
ing data consist of sets of input and associated output values. The goal of the
algorithm is to derive a function that predicts the output values to an accept-
able degree of fidelity. If the available dataset consists of only input values,
unsupervised learning can be used in an attempt to identify trends, patterns
or clustering in the data (Butler et al., 2018).

Quantitative Structure Activity Relationships (QSARs) are used to predict
the behavior of chemicals from their structures, leading to better understand-
ing of the adverse effects of the studied substances in cells and tissues. There-
fore QSARs belong to ML specifically applied to chemical structures (Selassie
and Verma, 2003). QSARs techniques make use of existing experimental data
to predict the activity or property of new or unseen chemicals. The concep-
tual basis of QSARs is that similar structures are expected to exhibit similar
biological behavior. The appropriate theoretical descriptors calculated from
structural information are used to train the models and predict the biological
activity of the chemicals (Cherkasov et al., 2014).
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1.2.1 Machine learning for drug design and virtual screening

AI tools are widely used in medicinal chemistry application especially in
drug discovery, which represents the very first step in the approval of a new
drug before clinical trials (see Figure 1.4) and usually takes from three to six
years. It is estimated that for each approved drug, 10’000 molecular candi-
dates are usually selected by AI.

In particular, AI tools are useful to design new potential drug, repurpose
existing drug or virtually screen large libraries to find potential drugs.

Generative artificial intelligence consists in designing new drug-like com-
pounds with desired activities from scratch (Button et al., 2019). This design
concept comprises three tasks: (i) molecule generation, (ii) molecule scoring,
and (iii) molecule optimisation. For example among the ligand-based stud-
ies, in a recent work (Merk et al., 2018b) Merk et al. trained a recurrent neural
network to capture the constitution of a large set of known bioactive com-
pounds. The general model was fine-tuned on recognizing RXR and PPAR
agonists. Four of the five synthesized top-ranking compounds designed by
the generative model revealed nanomolar to low-micromolar receptor mod-
ulatory activity in cell-based assays.

Drug repurposing is a strategy for identifying new uses for approved or
investigational drugs that are outside the scope of the original medical indi-
cation. It allows to reduce costs and speed up the development timelines.
For example, Raloxifene is a selective estrogen receptor modulator originally
developed to treat osteoporosis, which thanks to retrospective clinical analy-
sis, was repurposed also to treat breast cancer and recently proposed to treat
SARS-CoV-2 infection (Allegretti et al., 2021). Computational approaches
constitute the main route to drug repurposing (Pushpakom et al., 2019).

Virtual screening of wide libraries, such as natural products library (Merk
et al., 2018a), allows (1) to identify new scope for existing drugs ad thus speed
up the application process, (2) to find new alternative structures throughout
scaffold hopping and (3) find potential hazardous compounds.



1.2. Machine learning and nuclear receptors 11

1-2 years6-7 years1-2 years3-5 years

PHASE III

Efficacy

PHASE II

Dose 

finding 1 new drug

PHASE I

Safety

• Formulation 

stability

• Animal 

models

• Process 

chemistry

10’000 

compounds

250

compounds

5 

compounds
1

DRUG DISCOVERY PRE-CLINICAL CLINICAL TRIALS APPROVAL

FIGURE 1.4: Workflow of a drug approval.

1.2.2 Machine learning for prioritizing modulators

In-silico modelling based on machine learning can be used to fill the data-gap
in order to prioritize compounds, reduce animal testing and protect human
health.

In nuclear receptor frameworks, the use of computational methods to
screen and prioritize chemicals for endocrine activity has been already initi-
ated at the EPA’s National Center for Computational Toxicology (NCCT), the
U.S. Environmental Protection Agency (EPA) and the NTP Interagency Cen-
ter for Evaluation of Alternative Toxicological Methods (NICEATM), with a
special focus on ER and AR (Mansouri et al., 2020; Mansouri et al., 2016).

Starting with ER, a total of 18 in vitro assays targeting the main estrogen-
signaling steps (three cell-free radioligand binding assays; six dimerization
assays using both ERα and ERβ; two DNA binding assays; two RNA tran-
scription assays; two agonist- mode protein expression assays; two antagonist-
mode protein expression assays; and one cell proliferation assay) were de-
veloped. The collected bioactivity data were then used in the Collaborative
Estrogen Receptor Activity Prediction Project (CERAPP) to develop a total
of 48 QSAR and docking predictive models, which were evaluated using an
external set from the literature and then combined into consensus models.
The consensus models were then used to virtually screen a library of 32,464
unique chemical structures compiled from different lists of interest to the
EPA, which identified approximately 4,000 chemicals with evidence of ER
activity (Mansouri et al., 2016). A recent study applied explainable tools on
a deep learning architecture aimed to identify potential endocrine disruptors
starting from CERAPP data (Mukherjee, Su, and Rajan, 2021).

CERAPP workflow was applied to Androgen receptor in the later Col-
laborative Modeling Project for Androgen Receptor (CoMPARA) where 11
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assays covering the androgen signaling pathway were used to collect bioac-
tivity data. Collaborators from 25 international research groups contributed a
total of 91 qualitative and quantitative predictive QSAR models for binding,
agonist, and antagonist AR activities (Mansouri et al., 2016).

Other studies were focused on PPAR isoforms. For example, Al Sharif
and coworkers (Al Sharif et al., 2017) presented a workflow to screen chem-
icals based on their potential ability to bind and activate PPARδ and thus
identify chemicals with hepatotoxic potential; while Oshida et al. developed
methods useful for screening of environmental chemicals for PPAR α bioac-
tivity (Oshida et al., 2015).

Another recent work aimed to supply models that could be used to screen
compounds with potential endocrine disrupting characteristics considering
six targets, including AR, ER, GR, aromatase, TR,and PPARγ (Sun et al.,
2019).

1.3 Objectives

The main aim of this work is the advancing of nuclear receptors modulators
prediction through machine learning methods.

Nuclear receptors are a superfamily of transcription factors that play a
key role in several physiological processes such as cell growth control, devel-
opment, homeostasis, and metabolism. Because of their biological relevance,
NR receptors have been a privileged target for computational applications
based on machine learning models in order to i) prioritize the testing of po-
tential harmful compounds such as endocrine disruptors and ii) find new
leads for possible selective or promiscuous drug candidates.

Machine learning models are "data hungry" and are strongly influenced
by the quality of the input data according to the "garbage in, garbage out"
paradigm. Therefore, curation of a comprehensive dataset on nuclear re-
ceptor modulators, which can overcome the problem of "data fragmenta-
tion" among medicinal chemistry and toxicology sources, is highly beneficial
for the scientific community and especially for the development of machine
learning models.

In particular, multitask neural networks can exploit all possible informa-
tion and model underrepresented tasks or, in our case, modulation for nu-
clear receptors less represented in the experimental data.

We therefore wanted to create a reliable dataset containing information
on nuclear receptor modulators and, thus, evaluate the advantages and limi-
tations of multitask neural networks over traditional single-task approaches,
in identifying modulators.

Additional objectives included evaluating (i) consensus methods to re-
duce the effects of conflicting information by averaging model predictions
and (ii) different approaches for tuning the hyperparameters of the multitask
neural network.
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Chapter 2

Tools and methods

This chapter describes the methods applied during the project in order (i)
to codify the input, i.e., the molecules, (ii) to model the response, i.e., the
bioactivity prediction and finally (iii) to assess the model’s reliability.

2.1 Molecular structure encoding

For storing and modelling purposes it is necessary to encode the molecular
structures as string (SMILES) or vectors of molecular descriptors.

In the following sections SMILES notation and the molecular descriptions
used in this work will be briefly explained.

2.1.1 SMILES

The majority of molecular activity databases encoded molecules in SMILES
(Simplified Molecular Input Line Entry System) notation (Weininger, 1988).
In this way, the molecular structures can be stored as ASCII string, with
advantages in storing space and readability. SMILES line notation (a ty-
pographical method using printable characters) consists of a series of char-
acters containing no spaces. Hydrogen atoms may be omitted (hydrogen-
suppressed graphs) or included (hydrogen-complete graphs) and aromatic
structures may be specified directly or in a Kekulé form.

There are five generic SMILES encoding rules, corresponding to specifi-
cation of atoms, bonds, branches, ring closures, and disconnections (Figure
2.1 shows some examples).

1. Atoms are represented by their atomic symbols: this is the only re-
quired use of letters in SMILES. Each non-hydrogen atom is specified
independently by its atomic symbol enclosed in square brackets, [ ].
The second letter of two-character symbols must be entered in lower
case. Elements in the ’organic subset’ B, C, N, O, P, S, F, Cl, Br, and I
may be written without brackets if the number of attached hydrogens
conforms to the lowest normal valence consistent with explicit bonds.

2. Single, double, triple, and aromatic bonds are represented by the sym-
bols -, =, #, and :, respectively. Adjacent atoms are assumed to be con-
nected to each other by a single or aromatic bond (single and aromatic
bonds may always be omitted).
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3. Branches are specified by enclosing them in parentheses, and can be
nested or stacked.

4. Cyclic structures are represented by breaking one bond in each ring.
The bonds are numbered in any order, designating ring opening (or
ring closure) bonds by a digit immediately following the atomic symbol
at each ring closure. There are usually many different, but equally valid
descriptions of the same structure.

5. Disconnected compounds are written as individual structures, which
are separated by a ’.’ (period). The order in which ions or ligands are
listed is arbitrary.

C C

OCO

C N

C

O

O

OH3
+

CC

O=C=O

C#N

CC(=O)O

c1ccccc1

C1CCCCC1

[OH3+]

ethane

carbon dioxide

hydrogen cyanide

ace�c acid

benzene

ciclohexane

hydronium ion

SMILES 2D structure Name

FIGURE 2.1: Some examples of molecules written in SMILES
format associated with their name and 2D-structure.

In the SMILES language, there are two fundamental types of symbols:
atoms and bonds. Using these SMILES symbols, it is possible to specify a
molecule’s graph (its ’nodes’ and ’edges’) and assign ’labels’ to the compo-
nents of the graph (that is, say what type of atom each node represents, and
what type of bond each edge represents).

SMILES can be used as input by software to compute quantitative rep-
resentations of chemical structures (molecular descriptors). Some text-based
modelling techniques such as recurrent neural networks have proved to be
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able to work directly on SMILES representation for new structures genera-
tion (Gupta et al., 2018; Grisoni et al., 2020).

Although recently alternatives to SMILES have been proposed (e.g. SELF-
IES in (Krenn et al., 2019)), SMILES still is the most popular chemical repre-
sentation format.

2.1.2 Molecular descriptors

QSAR applications rely on the principle that the biological properties of any
chemical are the effects of its structural characteristics (Hansch and Fujita,
1964). Analogously, compounds with similar molecular structures will be
likely to show the same biological and physicochemical profile. Following
this assumption, it is possible to numerically encode molecular properties in
different forms called molecular descriptors.

Because of their numeric nature, molecular descriptors allow to link the
theoretical information arising from the molecular structure (e.g., geometric,
steric, and electronic properties) (Todeschini and Consonni, 2008) to some
experimental evidence on the molecule (e.g., acute/chronic toxicity, recep-
tor binding). Thus, molecular descriptors have become the input to many
computational toxicology applications (Grisoni et al., 2018a). The informa-
tion encoded by molecular descriptors ranges from simple bulk properties
to complex three-dimensional definitions. In particular, different levels of
complexity (or dimensionality) can be used to represent any given molecule
(Figure 2.2), as follows (Grisoni et al., 2018a):

• 0-Dimensional (0D). The chemical formula is the simplest molecular
representation since it specify the chemical elements and their occur-
rence in a molecule. For instance, the chemical formula of tamoxifen
(a selective estrogen receptor modulator used to treat breast cancer) is
C26H29NO, which indicates the presence of 26 Carbon, 29 Hydrogen,
1 Nitrogen, and 1 Oxygen atoms. This representation is independent
of any knowledge about atom connectivity and bond types. Hence,
molecular descriptors obtained from the chemical formula are referred
to as 0D descriptors and capture bulk properties. 0D descriptors are
very simple to compute and interpret, but show a low information con-
tent and a high degeneration degree, that is, they may have equal val-
ues for different molecules. Some examples of 0D descriptors are atom
counts (e.g., number of carbon atoms), molecular weight, and sum or
average of atomic properties (e.g., atomic van der Waals volumes).

• 1-Dimensional (1D). According to this representation, molecules are
perceived as a set of substructures, such as functional groups or atom-
centered fragments. This representation does not require the complete
knowledge of molecular structures. The 1D molecular representation
is reflected in the derived descriptors, which usually are binary (en-
coding for the presence/absence of given substructures) or occurrence
frequencies.
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• 2-Dimensional (2D). This representation adds an additional informa-
tion level to the 1D representation, by also considering how the atoms
are connected, in terms of both presence and nature of chemical bonds.
Usually, the molecule is represented as a graph, whose vertexes are the
atoms and edges are the bonds. From a graph representation, sev-
eral numerical quantifiers of molecular topology are mathematically
derived in a direct and unambiguous manner. They are commonly
known as topological indices (TIs). TIs encode topological properties
(e.g., adjacency, connectivity) and are usually sensitive to structural
features such as size, shape, symmetry, branching, and cyclicity. Of-
ten, also specific chemical properties of atoms are considered, e.g., mass
and polarizability, or the presence of hydrogen bond donors/acceptors.
Thus, topological indices can be logically divided into two categories:
(1) topostructural indices, which encode only information about adja-
cency and through-bond distances between atoms, and (2) topochem-
ical indices, which quantify information about topology but also spe-
cific chemical properties of atoms, such as their chemical identity and
hybridization state.

• 3-Dimensional (3D). An additional level of complexity may be added
by perceiving the molecule not only in terms of atom type, connec-
tivity, and adjacency but also by viewing it as a geometrical object in
space, characterized by the spatial configuration of the atoms. In other
words, the molecule is defined in terms of atom types and their x-y-z
coordinates. Descriptors deriving from 3D representation have a high
information content and can be particularly useful for modeling phar-
maceutical and biological properties. When dealing with the 3D rep-
resentation, users have to keep in mind several issues connected to
the geometric optimization of molecules, such as (1) the influence of
the optimization method on the coordinate values; (2) the presence of
more than one similar minimum energy conformer for highly flexible
molecules; and (3) the difference between the bioactive geometry and
the optimized geometry, the degree of deformation depending upon
the number of freely rotatable bonds in the molecule. For these rea-
sons, the cost/benefit of using 3D descriptors is case-dependent and
has to be carefully evaluated.

• 4-Dimensional (4D). In addition to the molecular geometry, a ’fourth
dimension’ can be introduced, usually aiming to identify and charac-
terize quantitatively the interactions between the molecule(s) and the
active site(s) of a biological receptor. For instance, a grid-based repre-
sentation can be obtained by placing molecules in a 3D grid of several
thousands of evenly spaced grid points and by using a probe (steric,
electrostatic, hydrophilic, etc.) to map the surface of the molecule. The
molecule can be then described through its molecular interactions with
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the probe (e.g., see Comparative Molecular Field Analysis and Com-
parative Molecular Similarity Indices Analysis descriptors). 4D repre-
sentations may also be ’ensemble-based’, that is, they can include con-
formational flexibility and freedom of alignment, through an ensemble
of the spatial features of different members of a training set, or by rep-
resenting each ligand by an ensemble of conformations, protonation
states, and/or orientations.

Descriptors can be chosen based on an a priori knowledge and/or on
their performance for the problem under analysis. Molecular descriptors can
be grouped according to the rationale underlying their design, which influ-
ences their applicability to computational problems and the required mod-
eling steps. In particular, molecular descriptors can be divided into classical
molecular descriptors and binary fingerprints.
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FIGURE 2.2: Graphical example of different molecular repre-
sentations of the same structure (vanillin, here depicted as a 2D

structure).

Classical molecular descriptors (MDs) are designed to encode a precise
structural/chemical feature (or a set of features of different complexity) into
one, single number. Thus, each descriptor can be used alone or in combina-
tion with other descriptors. Classical descriptors can have different measure-
ment scales: they can be integers (e.g., number of double bonds and counts



18 Chapter 2. Tools and methods

of atom types), binary (e.g., presence/absence of a given substituent) or can
have continuous values (e.g., molecular weight). The majority of classical
molecular descriptors are usually interpretable to a certain extent, and, in
some cases, they can be mapped back onto sets of structural features (i.e.,
reversible decoding).

Fingerprints

Binary fingerprints (FPs) provide a complete representation of all the struc-
tural fragments of a molecule in a binary form (Willett, 2006; Rogers and
Hahn, 2010). Unlike classical descriptors, fingerprints encode the 2D struc-
tural information in a series of binary digits or bits that represent the presence
or absence of specific substructures in the molecule and are meaningful only
when used as a whole. Usually, a set of patterns (e.g., branched/linear frag-
ments or substructures) are generated from a given molecule, the presence
and absence of a pattern are encoded within a string of a given length and
represented as 1 or 0, respectively (Shemetulskis et al., 1996).

Hash function is a mathematical algorithm that maps some input of vari-
able length to a fixed length value. In the case of FPs, a hash function is used
to map a substructure to a binary vector of fixed length. This procedure is
applied to all the considered substructures, using the logical OR operator, to
produce the fingerprint of the whole molecule. This means that the hash-
ing procedure allows the mapping of each substructure to the final FP by a
certain number of bits that are set to one.

A hash function is deterministic, that is, a certain substructure will be
always mapped to the same set of bits (when the same approach and param-
eters are used), although it usually does not allow reversible-decoding, that
is, it is not possible, starting from a given set of bits in the FP, to recreate the
original substructure that led to the observed configuration unlike structural
keys. In particular, hashing algorithms often lead to a ’collision’ of multiple
features in the same bit(s) and to the loss of the one-to-one correspondence
with molecular features.

Fingerprints allow performing quick calculations for molecule similar-
ity/diversity problems and the frequency of the molecular fragments en-
coded into FPs can be used to interpret the structural features underlying
the observed bioactivity patterns (Todeschini et al., 2012).

FPs are, thus, fixed-size binary vectors that encode the structural informa-
tion of a molecule by subdividing its structure in all the possible substructure
patterns (following a given set of rules), and then processing these patterns
by hashing algorithm. A pattern means, for example, a path of predefined
length characterized by the nature of atoms and bonds along the path or a
circular substructure rooted at a specific atom (Shemetulskis et al., 1996).

Extended Connectivity FingerPrints (ECFPs) are a particular group of FPs
that considers the molecular substructures as atom-centred fragments us-
ing a variant of the Morgan’s extended connectivity algorithm (Rogers and
Hahn, 2010). Atom-centred fragments are circular substructures, i.e., fully
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explored labelled trees of a particular length, rooted at a particular vertex in
the molecular graph.

The user-definable ’pattern length’ parameter identifies the maximum
atom-centred fragment radius to be explored, that is, the number of bonds
along a path starting from the central atom (that is 2 by default). Consid-
ering a length equal to 0, substructures are just represented by individual
atoms. An iterative process is used to explore the atom environment in order
to generate larger substructural fragments. At length 1, the information of
all the atoms directly bonded to each atom is taken into account. At length
2, the information of all the atoms within a diameter of 4 chemical bonds is
accounted for and so on. The process is complete when the chosen neighbor-
hood size is reached.

Figure 2.3 shows an ECFP generated with default settings for the FP pa-
rameters and selecting the maximum length of 1. The active bits (i.e., 1) are
associated to the corresponding circular fragments of radius equal to 0 or 1
in the processed molecule. In yellow, the active bits with fragment collision
(i.e., bits encoding more than one fragment-type) are highlighted.

1 1 0 0 1 0 1 1 1 0...

N
O

O NC c

NO
...

4 fragments of length 0

12 fragments of length 1

FIGURE 2.3: Extended Connectivity FingerPrints (ECFPs) with
a maximum length of 1 for Tamoxifen.
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WHALES

The Weighted Holistic Atom Localization and Entity Shape (WHALES) de-
scriptors (Grisoni et al., 2018b) encode geometric inter-atomic distances, molec-
ular shape, and atomic properties in a holistic way. For each 3D atom posi-
tion, weighted covariance matrix is computed capturing the spatial distri-
bution of the surrounding molecular atoms. This covariance matrix is then
used to normalize the inter-atomic distances and account for local feature
distributions. These obtained inter-atomic distances are proportional to the
remoteness of each atom from the center of local atomic distributions, mea-
sured in variance units. Additionally, the contribution of each atom to the
atom-centered covariance matrix is weighted by atomistic partial charges
in order to consider potential ligand-receptor interaction patterns or ’phar-
macophore’ features. The procedure to calculated WHALES descriptors is
briefly explained below and in Figure 2.4A, for further details see (Grisoni
et al., 2018b).

• Step 1 Atom-centered covariance matrix calculation. Let X be the ma-
trix of the atom coordinates, made of as many rows as there are non-
hydrogen atoms (n) and three columns corresponding to the 3D co-
ordinates of each non-hydrogen atom. The distribution of atoms and
their partial charges around any j-th atom is captured using an atom-
centered weighted covariance matrix (Sw(j)),

Sw(j) =
∑n

i=1 |δi| ·
(
xi − xj

) (
xi − xj

)T
)

∑n
i=1 |δi|

(2.1)

where
(
xi − xj

)
are the differences between the 3D coordinates of the

j-th atomic center and those of any i-th atom, while |δi| is the abso-
lute value of the partial charge of the i-th atom. The atom-centered
covariance is computed for any non-hydrogen atom of the molecule.
The weighted covariance matrix is influenced by the density and par-
tial charges of atoms surrounding j.

• Step 2 Atom-centered Mahalanobis distance calculation. From Sw(j), the
atom-centered Mahalanobis (ACM) distance from the center j to any i-
th atom is calculated as follows:

ACM(i, j) =
(
xi − xj

)T · S−1
w(j) ·

(
xi − xj

)
(2.2)

All of the pairwise normalized interatomic distances calculated accord-
ing to Eq. 2.2 are collected in the ACM matrix.

• Step 3 Calculation of atomic indices. From the ACM matrix, three in-
dices are calculated for each atom:
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1. Remoteness (Rem), which is the ACM matrix row-average, calcu-
lated as follows:

Rem(j) = ∑n
i=1 ACM(j, i)

n− 1
(2.3)

2. Isolation degree (Isol), which is the ACM matrix column minimum
(excluding the atomic center):

Isol(j) = mini (ACM(i, j)) (2.4)

3. Isolation-Remoteness ratio, calculated as:

IR(j) =
Isol(j)
Rem(j)

(2.5)

The remoteness, isolation degree values and their ratio calculated
for negatively charged atoms are assigned a negative sign, as fol-
lows:

i f δj < 0


Isol(j) = −Isol(j)

Rem(j) = −Rem(j)
IR(j) = −IR(j)

(2.6)

This procedure allows to distinguish atoms having the same val-
ues of isolation degree and remoteness but charged differently.

• Step 4 WHALES descriptors calculation. A binning procedure is ap-
plied to obtain a fixed-length representation, enabling the straightfor-
ward comparison of molecules with different numbers of atoms. The
WHALES descriptors are, thus, usually calculated as deciles plus mini-
mum and maximum of (i) Isol, (ii) Rem, and (iii) IR. Thus, each molecule
is characterized by the same number of descriptors (i.e., 11 values for
each atomic index, for a total of 33 descriptors), regardless of the num-
ber of atoms considered.

For WHALES calculations usually the Gasteiger-Marsili (Gasteiger and
Marsili, 1980) partial charges and MMFF94 (Halgren, 1996) energy-minimized
structures are used.

An adaptation of the traditional WHALES was carried out by computing
of Euclidean distance instead of Mahalanobis distance without accounting
for the covariance matrices and thus replacing steps 1 and step 2 with a par-
tial charge weighted Euclidean distance calculation.

WHALES descriptors can be able to embed features related to the for-
mation of the ligand-receptor complex, therefore were chosen in this study
also to describe protein features (Figure 2.4B). In this case the 3D geometry
is given by the atom coordinates listed in Protein Data Bank (PDB) files. The
primary information stored in a PDB file, indeed, consists of coordinate in-
formation. A typical PDB formatted file includes a large ’header’ section of
text that summarizes the protein, citation information, and the details of the
structure solution, followed by the sequence and a long list of the atoms and
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their coordinates. For this analysis we used the crystallographic structures
of ligand-nuclear receptor complexes from the PDBbind database (PDB, Ac-
cessed: 2021-07-21; Berman et al., 2000) summarized in Table 2.1.



2.1. Molecular structure encoding 23

A B

3D geometry 
and partial 

charges

Atom-centred 
covariance

Partial charge-
weighted 
Euclidean 
distance

Sign and
deciles

BP selection and 
partial charges

3D geometry

Partial charge-
weighted 
Euclidean 
distance

Sign and
percentiles

FIGURE 2.4: (A) Starting from a given molecular graph, 3D
energy minimization and partial charge calculation are per-
formed. The coordinates and the computed partial charges are
used to calculate the atom-centered weighted covariance and
then the ACM distance matrix. From the ACM, WHALES de-
scriptors are calculated as the deciles, the minimum and the
maximum of isolation degree (Isol.), remoteness (Rem.) and
isolation-remoteness ratio (IR). (B) Adaptation of WHALES
pipeline to the binding pocket (BP) of a protein structures ex-
tracted from a PDB file. In this case percentiles are computed.
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TABLE 2.1: Summary of PDBbind crystallographic structures.

Target No. ligands PDB structures

AR 22

1E3G, 1Z95, 2AM9, 2AMA, 2AX6, 2AX9,
2HVC, 2IHQ, 2NW4, 2OZ7, 3B5R, 3B65,
3B66, 3B67, 3B68, 3G0W, 3V49, 4QL8,
5CJ6, 5T8E, 5T8J, 5V8Q

ERα 13 1X7E, 1X7R, 2I0J, 3ERD, 3ERT, 5FQP,
5FQT, 5FQV

ERβ 36

1NDE, 1QKN, 1U3Q, 1U3R, 1U3S, 1U9E,
1X76, 1X78, 1X7B, 1YY4, 1YYE, 1ZAF,
2GIU, 2I0G, 2J7X, 2JJ3, 2NV7, 2QTU,
2Z4B

FXR 68

3DCT, 3OKH, 3OKI, 3OLF, 3OMM, 3OOF,
3OOK, 4OIV, 5Q0I, 5Q0J, 5Q0L, 5Q0M,
5Q0N, 5Q0O, 5Q0P, 5Q0Q, 5Q0R, 5Q0S,
5Q0T, 5Q0U, 5Q0V, 5Q0W, 5Q0X, 5Q0Y,
5Q10, 5Q11, 5Q12, 5Q13, 5Q14, 5Q15,
5Q16, 5Q17, 5Q18, 5Q19, 5Q1A, 5Q1B,
5Q1C, 5Q1D, 5Q1F, 5Q1G, 5Q1I

GR 18 1NHZ, 1P93, 3K22, 3K23, 4CSJ, 4P6W,
4P6X

PPARα 11 1I7G, 1KKQ, 3FEI, 3G8I, 3KDT, 3KDU
PPARδ 8 3DY6, 3GWX, 3GZ9, 3PEQ, 3TKM

PPARγ 59

1FM9, 1I7I, 1NYX, 1ZEO, 2ATH, 2F4B,
2G0G, 2G0H, 2GTK, 2HFP, 2I4J, 2I4Z,
2P4Y, 2Q8S, 2YFE, 3B1M, 3FEJ, 3FUR,
3G9E, 3H0A, 3IA6, 3LMP, 3OSI, 3OSW,
3R5N, 3R8I, 3SZ1, 3T03, 3TY0, 3U9Q,
4A4V, 4A4W, 4JAZ, 4PRG, 4R06, 4XTA,
4XUH, 4XUM, 4Y29, 5F9B, 5LSG,
5TWO, 5U5L

PR 16 1A28, 1SQN, 1SR7, 1ZUC, 2W8Y, 3G8O,
3HQ5, 3KBA, 4OAR

PXR 4 1ILH, 1M13, 2O9I

RXR 20
1RDT, 3FAL, 3NSQ, 3OZJ, 3PCU, 3R2A,
3R5M, 4K4J, 4K6I, 4M8E, 4M8H, 4POH,
4POJ, 4PP3, 4PP5, 4ZSH, 5MKJ

After removing the structures which include an allosteric ligand, we aligned
all the remaining structures and, in each of them, we selected only residues
within 5 Å from any of the crystallographic ligands. This procedure returns
the overlapping portion of each crystallographic receptor in correspondence
of the binding site, compared to all the receptors, that was used for the cal-
culation of the WHALES. To take into account the bigger dimensions of the
binding pockets compared to ligands and thus to better capture the pocket
conformation, percentiles were computed instead of deciles.
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2.2 Traditional QSAR classification methods

Classification (or, more formally, supervised classification) is the specific area
of machine learning that aims to assign objects to one of several predefined
classes. The objects, that represent the input of a classification task, are called
records, instances or observations and in QSARs problems are typically rep-
resented by molecules. Each of these records is characterized by a tuple (x, y),
where x represents the set of attributes or features of the object and y its class
label(s). The attributes can be both numerical (i.e., continuous values) or
categorical (i.e., discrete, cardinal values), while the class labels must be cat-
egorical. Classification is the task of learning a target function f that maps
each attribute set x to one of the predefined class labels y (Tan, Steinbach, and
Kumar, 2005).

An example of a classification problem in the domain of QSAR could be
the one of predicting the activity of a molecule for a given biological target.
The set of class labels could be {active, inactive}. In this case we are facing a bi-
nary classification problem. The set of features instead could be represented
by molecular descriptors (e.g. {molecular weight, hydrophobicity, presence of spe-
cific functional groups}). Ideally, all the descriptors provided during the train-
ing phase to the classification algorithms contribute to learning a function
that maps the attribute set to one of the two class labels. The final goal of this
classification model is to be able to learn a generalized function such that,
given a new set of molecules (described by the predefined set of features) the
model will predict their activity towards the selected target.

Given these preliminaries related to the supervised classification prob-
lem, several classification algorithms (i.e., the procedures responsible to learn
from the data the mapping function f ) were developed throughout the years.
In the following paragraphs we will present some instances of the classifica-
tion algorithms used in this project.

2.2.1 k-Nearest Neighbours and N-Nearest Neighbours

k-Nearest Neighbours (kNN) is a local classification method that assigns a
target molecule to the most represented class among the k most structurally
similar records of the training set according to a predefined distance com-
puted among features (Wilkinson et al., 1983; Keller, Gray, and Givens, 1985).
The class membership of a new object will thus be defined as a majority vote
of its neighbors, with the new object being assigned to the class most com-
mon among its k nearest neighbors.

The training objects are vectors in a multidimensional feature space, each
paired to a class label. The training phase of the algorithm consists of stor-
ing the feature vectors and class labels of the training objects; while in the
classification phase, all the distances (using a user-defined metric) between
the unlabeled vector of features of the new object and the training objects are
computed. The new object is classified by assigning the label which is most
frequent among the k training objects nearest to that query point (Figure 2.5).
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k = 3

k = 9

x1

x2

FIGURE 2.5: Toy example of kNN with basic majority voting.
Objects are described by two features (y1 and y2) and are di-
vided into 2 classes (green and orange triangles). A new object
is represented by a grey triangle. The two circles highlight the
areas including 3 and 9 nearest neighbours. In both cases the

new object will be assigned to the orange class.

A drawback of the basic majority voting classification occurs when the
class distribution is unbalanced. That is, the most frequent class tends to
dominate the prediction of the new object, because the objects belonging to
the most frequent class tend to be widely spread among the neighbors due
to their large number. One way to overcome this problem is to weight the
object contribution, considering the distance from the test object to each of its
k nearest neighbors. The class (or value, in regression problems) of each of
the k nearest objects is multiplied by a weight proportional to the inverse of
the distance from that point to the test object.

For a kNN model, it is necessary to optimize the number of k neighbours
as well as the distance metric. The best choice of k is data-dependent; gen-
erally, higher values of k reduces effect of the noise, but make boundaries
between classes less distinct. On the contrary, a model with k = 1 will be
more affected by noise.

In binary (two class) classification problems, it is helpful to choose k to be
an odd number as this avoids tied votes.

The best choice of distance metric depends on the features type. A com-
monly used distance metric for continuous features is Euclidean distance,
while for binary features (e.g., fingerprints) Jaccard-Tanimoto distance is pre-
ferred.

N-Nearest Neighbours (N3) (Todeschini et al., 2015) method, as kNN,
considers only local information to perform the classification of each object.
Unlike kNN, N3 method takes into account all the n – 1 objects to classify
the i-th new object. The n – 1 neighbours are sorted from the most similar
to the least similar to the new object and the corresponding similarity rank
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vector is obtained; then, the neighbour contributions to class assignment ex-
ponentially decrease as the similarities diminish, since they are weighted by
the rank, whose role is modulated by an α exponent to be optimized.

2.2.2 Random Forest

Decision tree classification models are a family of predictive models used
for supervised classification, represented by a tree structure composed by
branches and leaves (Rokach and Maimon, 2007). A decision tree is used as
a predictive model to go from observations of the features x of an object (rep-
resented in the branches) to conclusions about the object’s target class y (rep-
resented by the leaves). In these tree structures, leaves are associated with
class labels and branches represent conjunctions of features that lead to those
class labels. An illustrative example of a decision tree model is presented in
Figure 2.6.

x1 < 0.5

x2 > 0.5

yes

yes

no

no

FIGURE 2.6: Toy example of a decision tree classifier. Leaf (i.e.,
terminal) nodes are coloured according to the class assignation
(green and orange) while in the two decision nodes include the

splitting criteria of the branches.

A decision tree can be learned by splitting the data into subsets based on
attribute value tests (i.e., logic statements on attribute values). This process is
repeated on each derived subset in a recursive manner, called recursive par-
titioning. The recursion is completed when the whole subset belongs to the
same target class, or when splitting no longer adds value to the classification
performance. Many specific learning algorithms were proposed in the liter-
ature throughout the years, and the most relevant are: ID3, C4.5, and CART
(Rokach and Maimon, 2007). Algorithms for constructing decision trees usu-
ally work top-down, by choosing a variable at each step that best splits the
set of available examples. Different algorithms use different metrics for mea-
suring the best split. These, generally, measure the homogeneity of the tar-
get variable within the subsets. These metrics are applied to each candidate
subset, and the resulting values are combined (e.g. averaged) to provide a
measure of the quality of the split. The most used metrics to determine the
quality of a split are Gini impurity and information gain.
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A peculiar type of classification procedure that gained increasing success
in the machine learning community is represented by ensemble learning. The
general idea is to boost classification performances by averaging across the
predictions of an ensemble of classifiers instead of relaying on a single one.
In the context of decision trees Random forest (Breiman, 2001) classifiers were
introduced.

Random forest is an ensemble learning method for classification, that op-
erates by constructing a multitude of randomized and uncorrelated decision
trees at training time and outputting the class that is the mode of the classes
of the individual trees. The main advantage of random forests over decision
trees is the capability of avoiding overfitting to the training set, thanks to the
bagging (or bootstrap aggregating) procedure.

Several parameters can be optimized in a Random Forest model, such as
the number of trees to be considered and the prune and split criteria.

2.2.3 Naïve Bayes

Naïve Bayes classifiers are a family of probabilistic classifiers, based on the
Bayes theorem and on the strong (naïve) assumption of conditional indepen-
dence between features x given the class y (Tan, Steinbach, and Kumar, 2005).
In this setting we consider the classification problem from a probabilistic per-
spective. The class variable is assumed to have a non-deterministic relation-
ship with the features. Thus, we treat the set of features as a set of random
variables X and the class as random variable Y and capture their relation-
ship stochastically with the conditional probability P(Y|X). This conditional
probability is also known as the posterior probability of Y, as opposed to its
prior probability, P(Y). During the training phase, we need to learn the con-
ditional probability P(X|Y), i.e., the likelihood for every combination of X
and Y based on information gathered from the training data.

Accurately estimating the posterior probabilities for every possible com-
bination of class label and feature values is a difficult problem because it re-
quires a very large training set, even for a moderate number of features. The
well-known Bayes theorem becomes useful, because it allows to express the
posterior probability in terms of the prior probability P(Y), the class-conditional
probability (or likelihood) P(X|Y), and the prior probability of the evidence ev-
idence P(X):

P(Y|X) = P(X|Y)P(Y)
P(X)

(2.7)

When comparing the posterior probabilities for different values of Y, the de-
nominator term P(X) is always constant, and thus, can be ignored. The prior
probability can be easily estimated by computing the class proportion for
the objects in the training set. To estimate the class-conditional probabilities
P(X|Y) the náive assumption comes in handy. A Naïve Bayes classifier esti-
mates the class-conditional probability by assuming that the features, i.e., the
components of X are conditionally independent, given the class label y. Thus
the class-conditional probability can be estimated for each feature Xi in the
attribute set X = {X1, X2, . . . , Xd} independently. The likelihood P(X|Y) can
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be formally computed as:

P(X|Y) =
d

∏
i=1

P(Xi|Y) (2.8)

With the conditional independence assumption, instead of computing the
class-conditional probability for every combination of X, we only have to
estimate the conditional probability of each Xi given Y.

This approach is more practical because it does not require a very large
training set to obtain a good estimate and its optimization is straightforward
since no parameters has to be preliminary defined.

Finally, different assumptions can be drawn on the nature of the class-
conditional distributions, corresponding to variants of the náive bayes clas-
sifier. Whereas multinomial and Bernoulli náive Bayes classifiers are used for
discrete/categorical set of attributes, gaussian náive Bayes is used to deal with
continuous values.

2.2.4 Applicability domain

’The applicability domain of a (Q)SAR model is the response and chemical
structure space in which the model makes predictions with a given reliability’
(Netzeva et al., 2005) (see Figure 2.7). In other word, the applicability domain
is the chemical space where predictions are obtained by model interpolation
and thus are associated with higher confidence (Sahigara et al., 2013).

In the QSAR field, the Applicability Domain (AD) is widely understood
to express the scope and limitations of a model, i.e., the range of chemical
structures for which the model is considered to be applicable. Therefore,
reliable predictions are limited to the chemicals that are structurally similar
to the ones used to build the model.

The most commonly adopted approach consists in defining the AD of the
model by means of the features distance from training objects.

In this work, a previously published approach (Sahigara et al., 2013) which
is based on a set of local thresholds corresponding to the training data points
and defining the width of their neighbourhood, was applied. For each i− th
training molecule, the associated threshold ti was calculated as the average
Jaccard-Tanimoto distance on ECFPs to the first ki neighbours, the number ki
being variable and depending on the object density in the chemical space.

If a test molecule exceeds the threshold of all the training molecules, then
it is considered as outside the AD, and its prediction is considered as unre-
liable. On the contrary, if the molecule falls inside the neighbourhood of at
least one training molecule, it will be considered inside the domain of appli-
cability and associated with a reliable prediction. Therefore, given the train-
ing set TR, for each test molecule j, the AD decision rule is

j ∈ AD ⇐⇒ ∃i ∈ TR : Dij ≤ ti (2.9)

where Dij is the binary Jaccard-Tanimoto distance between the j− th test
and the i− th training molecule.
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FIGURE 2.7: Toy example of applicability domain as a a region
with reliable predictions.

2.3 Artificial neural networks

The study of artificial neural networks (ANN) was inspired by attempts to
simulate biological neural systems. Analogous to human brain structure,
an ANN is composed of an inter-connected assembly of nodes and directed
links or connections between the nodes (Tan, Steinbach, and Kumar, 2005).
The simplest ANN model is called Perceptron (Minsky and Papert, 1988). Per-
ceptrons were developed in the 1950s by Frank Rosenblatt, considered one
of the fathers of deep learning. Nowadays other models of artificial neurons
are widely used, but to understand neural networks, it’s useful to first un-
derstand perceptrons (Nielsen, 2015).

The perceptron consists of two types of nodes: input nodes, which are as-
sociated with the input features x, and an output node(s), which represents
the model output y (i.e., the class). The nodes in a neural network’s archi-
tecture are commonly known as neurons. In a perceptron, each input node
is connected via a weighted connection to the output node. The weighted
connection emulates the strength of synaptic links between neurons. As in
biological neural systems, training a perceptron model means to adapt the
weights of the connections until they fit the input-output relationships of the
underlying data.

A perceptron computes its output value ŷ, by performing a weighted sum
on its inputs xi ∈ x, subtracting a bias factor b from the sum, and then apply-
ing a non-linear transformation g(.), called activation function. More specifi-
cally, the output of a perceptron model can be expressed as follows:

ŷ = g(
d

∑
i=1

wixi − b) (2.10)
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Where d is the number of input neurons, which equals the number of fea-
tures in the data. wi is the learned weight for the i-th neurons and g(.) is a
non-linear activation function (e.g. sigmoid, hyperbolic tangent, rectified lin-
ear units), that projects the weighted sum onto a specific numerical interval
(e.g. [0, 1]).

2.3.1 Feedforward neural networks

The most used ANN supervised classifier is the Multi-layer perceptron (MLP)
or Feedforward neural network (FNN), that introduces a more complex struc-
ture to the simple perceptron described so far. The network may contain
several intermediary layers between its input and output layers (an example
is reported in Figure 2.8). Such intermediary layers are called hidden layers
and the nodes embedded in these layers are called hidden neurons. These
additional complexities allow FNN to model more complex relationships be-
tween the input and output variables.

Input Layer ∈ ℝ¹³

Hidden Layer ∈ ℝ⁹

Hidden Layer ∈ ℝ⁷

Output Layer ∈ ℝ¹

FIGURE 2.8: Toy example of a feedforward neural network with
an input feature vector of length 13, two hidden layers of 9 and

7 neurons, respectively and one output.

The process of learning the weights of a FNN from data is a non-trivial
task. The goal of the learning algorithm is to determine the set of weights w
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that minimize a defined loss function (e.g. sum of squared errors or cross-
entropy) over the predicted classes ŷ and the real classes y. Note that the
loss function depends on w because the predicted class ŷ is a function of
the weights assigned to the hidden and output nodes. Greedy algorithms,
such as those based on the gradient descent method, have been developed
to efficiently solve the optimization problem (i.e., find the global minimum
of the loss function). The general update formula is based on the gradient
of the computed error/loss. It states to update the weights in the direction
that reduces the overall error term. In order to update and learn the weights
of the output and hidden nodes of a neural network an efficient algorithm
based on gradient descent has been developed. It is called Backpropagation
and described in details in (Hecht-Nielsen, 1992).

Each connection represents a weight, whereas each node represents a
learning function f that, in the feedforward phase, processes the information
of the previous layer to be fed into the subsequent layer. In the backpropa-
gation phase, each weight is adjusted according to the loss function and the
optimization algorithm. Different types of learning or activation functions
exist in literature; the most known functions are sigmoid (σ), Rectified Lin-
ear Unit (ReLu), hyperbolic tangent (tanh) and leaky ReLu (Nair and Hinton,
2010; Maas, Hannun, Ng, et al., 2013; Agostinelli et al., 2014). To iteratively
adjust the weights, a loss function is computed considering the experimental
and the predicted response. Neural network tuning implies setting a learning
rate that determines the update of the weights in each iteration with respect
to the gradient of the loss function; this parameter can be fixed or changed
during the learning (e.g., exponential decay).

For computational and learning efficiency, in each training step (i.e., iter-
ation) a subset of training objects called batch is used. When all the objects
are seen by the model, i.e., after a number of iterations equal to the training
set size divided by the batch size, a training epoch is completed.

Furthermore, several strategies called regularization techniques can im-
prove the network’s generalizing ability and reduce overfitting. This is the
case of dropout and weight decay (L1 or L2 regularization). In this work, we
used the cross-entropy as loss function () which is the standard loss function
for classification problems; it can handle multiple outputs also in the case of
missing data.

The threshold of assignment for the output nodes for each neural net-
work was optimized on the basis of ROC curves (Fawcett, 2006), that is, if
the output of the neural network ensemble node is equal or lower than the
best task-specific threshold selected using the ROC curve, the compound is
predicted inactive, otherwise active.

2.3.2 Graph convolutional networks

Graphs naturally arise in many real-world applications, including molecular
representations. By representing a molecule as a graph, the structural in-
formation can be encoded to model the relations among atoms, and furnish
more insights underlying the data (Kipf and Welling, 2016).
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Currently, the most used graph neural network models are the Graph
Convolutional Networks (GCNs), where filter parameters are typically shared
over all locations in the graph.

For GCN models, the goal is to learn a function of features on a graph
G = (ν, ε) which takes as input:

• A feature description xi for every node i; summarized in a N × D fea-
ture matrix X, where N is number of nodes and D the number of input
features.

• A representative description of the graph structure in matrix form; typ-
ically in the form of an adjacency matrix A.

Then GCN can produce either a node-level output Z (an N × F feature
matrix, where F is the number of output features per node) or a graph-level
outputs by introducing some form of pooling operation (Duvenaud et al.,
2015). Since in the latter case, the task is to predict a single class for the entire
graph instead of for every node, it is necessary to aggregate the representa-
tions of all the nodes and potentially the edges to form a graph-level repre-
sentation. Such process is more commonly referred as a readout. A simple
choice is to average the node features of a graph (Wang et al., 2019).

In our case, since the objective is the assignation of a class label to an
entire molecule (i.e., graph) we considered graph-level outputs.

2.3.3 Multi-task learning

Multi-task learning (MTL) works as an inductive transfer mechanism aimed
to improve generalization performance by leveraging the domain-specific in-
formation contained in the training features of related tasks (Caruana, 1997).

In classification problems, MTL models are able to assign objects to one of
several predefined classes for multiple tasks without the condition of mutual
exclusivity as in the case of multiclass learning. In this case y is a vector of
labels, one for each task. The tasks have to be related, but values of y are not
mutually exclusive (see Figure 2.9).

Multitask learning usually rely on fully connected neural network layers
trained on joint tasks, where the output is shared among all learning tasks
and then fed into individual classifiers, one for each task (Ramsundar et al.,
2015; Dahl, Jaitly, and Salakhutdinov, 2014; Proschak, Stark, and Merk, 2018).

When some dependence relationships exist among the tasks, the model
should learn a joint representation and, thus, benefit from an information
boost (Ruder, 2017; Xu et al., 2017; Caruana, 1997).

As in single-task, in multi-task feedforward neural networks, input vec-
tors are mapped to output vectors with repeated compositions of layers and
the output layer consists of as many nodes as tasks.

We used multitask networks with and without a bypass net, which is an
independent additional layer that ‘bypass’ shared layers to directly connect
inputs with outputs leading to more robust results (Ramsundar et al., 2015).
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Single task Mul�-task

FIGURE 2.9: Comparison of single-task and multi-task data. In
the former case one model for each task is needed, while in the
latter one model is able to predict simultaneously all the tasks

Several mechanisms might help MTL models to generalize better, for ex-
ample (Caruana, 1997):

• Statistical Data Amplification, which is an increase in object size due to
extra information in the training data of related tasks.

• Attribute Selection, which, as a consequence of data amplification, is an
increase ability of the model to distinguish relevant input features.

• Eavesdropping, which is the ability of a MTL model to eavesdrop, i.e.,
learn of, important features for one tasks and transfer this knowledge
to other tasks.

Recent attempt made to demystifying the role of MTL (Xu et al., 2017)
in QSAR filed states that: ’when tasks contain molecules in the training set
with structures similar to those in other tasks and the activities (task labels)
between these similar molecules are correlated (either positively or nega-
tively), building a multitask DNN can boost the predictive performance; oth-
erwise, if the activities between these similar molecules are uncorrelated, us-
ing multitask models can degrade the predictive performance’. Moreover,
it was proved that when tasks do not share structural similarities between
molecules, multitask model will show comparable predictive performance
to single task models, regardless of whether the activities in the tasks are
correlated (Xu et al., 2017).

2.3.4 Parameters tuning

The choice of a modelling approach usually requires the choosing of related
learning parameters which can vary greatly in number from one approach to
another. For example kNN models depend on the distance metrics selection
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as well as on the definition of k. The number of parameters to tune increases
when considering neural networks. Hence, the following parameters are ex-
ample of user-definable parameters and thus prone to tuning:

• number of layers; in case of one or two hidden layer the network is
called shallow, while a network with more than two hidden layers is
called deep;

• number of neuron per layers;

• learning rate which is a number determining the update of the weights
in each iteration with respect to the gradient of the loss function;

• batch size which indicates the size of the subset of training examples to
use in each iteration;

• dropout, which indicates a percentage of randomly selected neurons to
turn off;

• type of norm penalty (none, L1 or L2 function);

• type of activation function, the most used alternatives are ReLU, sig-
moid and hyperbolic tangent;

• type of optimization algorithm which includes stochastic gradient de-
scend, RMSProp, Adam and Adamax.

Greater complexity comes from the fact that many of these parameters are
interdependent, such as the number of layers and the number of neurons per
layer in defining the network architecture.

Different strategies to tune the network parameters exists, the most known
are grid search, random search and genetic algorithm (Liashchynskyi and
Liashchynskyi, 2019) (Figure 2.10).

• Grid search (GS) strategy, as a brute-force strategy, is the most computa-
tionally expensive and time consuming strategy, but allows to explore
all the possible combinations of parameters at the selected levels in the
search space. Grid search suffers from high dimensional spaces, but
often can easily be parallelized.

• Random search (RS) strategy avoids the complete selection of all com-
binations by a random selection of combinations and thus is more ef-
ficient than GS (Bergstra and Bengio, 2012). We chose to randomly se-
lect a subset of GS combinations and thus to limit the exploration. The
number of random combinations to test is user-defined, usually on the
basis of a trade-off between available computational time/power and
satisfying performance.

• Genetic algorithm (GA) is an heuristic stochastic evolutionary search
algorithm based on sequential selections, combinations, and parameter
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mutations simulating biological evolution. In other words, combina-
tions of parameters leading to higher performances or fitness survive
and have higher chances to reproduce and generate children with a pre-
defined mutation probability. Each generation consists of a population
of chromosomes representing points in search space. Each individual
is represented as a binary vector. In our case, the genetic algorithm
begins with a randomly generated population of n chromosomes and
the computation of their fitness as in k-fold cross validation. Then, the
selection and recombination process, based on each chromosome’s fit-
ness, lead to the generation of two children with a mutation probability
for each bit usually equal to 10%. After inserting the children into the
population, the two worst-performing individuals (i.e., those with the
lowest fitness) were discarded. This process is iterated till reaching a
stopping criterion. In addition, after some generations a cataclysm can
be simulated by replacing the worst performing half of the population
with new randomly generated chromosomes.
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FIGURE 2.10: Toy example of optimization methods for 2 pa-
rameters with 10 levels each. In this case, random search and

genetic algorithm explore 20% of the possible combinations.

In Appendix A a study carried out to compare these three different opti-
mization algorithms is illustrated.

2.4 Model validation

The validation of a model consists in testing its predictive ability, which
should provide similar statistical parameters both for the objects used to train
the model and new (in AD) objects in order to be considered stable. Basically,
the validation techniques are used to calibrate the model parameters and to
verify that the model avoids overfitting.

Usually a part of the dataset is used to build a reduced model (training
set), which subsequently is used to predict the remaining part (evaluation or
test set).
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There are several validation techniques. The most common technique is
cross validation. In k-fold cross-validation the original dataset is partitioned
into k equal-sized disjoint folds. During each run, one of the partitions is cho-
sen for testing, while the rest of them are used for training. This procedure
is repeated k times such that each partition is used for testing exactly once.
The performances of the model are measured by summing up the errors of
the model across the k runs. This method allows to abstract the results to the
specific partition performed once on the data. Furthermore, cross-validation
provides a more consistent estimation of the error, since all the instances in
the dataset are used for testing.

Figure 2.11 summarizes the main step in a QSAR development pipeline.
Starting from a set of chemicals paired to experimental properties or bioac-
tivities and after a pretreatment of the chemical structures and molecular de-
scriptors calculation, the data are partitioned into a training and a test set.
The former will be further partitioned and undergo to a validation proce-
dure in order to calibrate the model’s parameters and test the robustness.
The test set will be used to mimic the final use of the model which should
provide satisfying performance also on unseen molecules falling inside the
applicability domain.
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FIGURE 2.11: Pipeline of QSAR development: from experimen-
tal data and molecular representation through molecular de-
scriptor computation and data splitting to model optimization

and validation.

2.5 Consensus modelling

Consensus approaches, also known as high-level data fusion or ensemble ap-
proaches, are mathematical and statistical techniques aimed to combine and
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integrate information derived from different sources to increase the outcome
reliability and overcome limitations of single approaches (Hewitt et al., 2007).

In the framework of QSARs, consensus approaches are generally recog-
nized to reduce the effects of underestimating uncertainties in the prediction
of biological activities (Neumann and Gujer, 2008; Weber, VanBriesen, and
Small, 2006). The main underlying assumption is that individual models,
consider only partial structure-activity information, as encoded by molecu-
lar descriptors and adopted algorithms. Thus, the combination of multiple
QSAR predictions may provide a wider knowledge and increase the reliabil-
ity associated with the predictions compared to individual models (Hewitt
et al., 2007; Jaworska and Hoffmann, 2010).

Reducing the effects of contradictory information by averaging the pre-
dictions of models (Hewitt et al., 2007; Grisoni et al., 2015; Votano et al.,
2004) is one of the main advantages of the consensus methods, although this
is not always reflected in an improvement of the predictive ability compared
to single models (Hewitt et al., 2007; Grisoni et al., 2015). Another advan-
tage of consensus methods is the broadening of the domain of applicability
compared to single models.

For these reasons, consensus methods have been extensively applied in
QSAR studies (Ballabio et al., 2017; Pradeep et al., 2016; Chauhan and Ku-
mar, 2018; Ruiz et al., 2017; Mansouri et al., 2020; Mansouri et al., 2016).
In particular, recent studies on the improvement achieved with large-scale
consensus approaches for quantitative models can be found in the literature
(Zakharov et al., 2019; Ambure et al., 2019).

In this thesis, two consensus strategies were applied to integrate the pre-
dictions provided by individual models: majority voting and the Bayes con-
sensus with discrete probability distributions. These methods are briefly de-
scribed below.

2.5.1 Majority Voting

The family of voting strategies combines the predictions given by indepen-
dent models with different frequency-based approaches, such as averaging
and scoring (Ruiz et al., 2017; Abdelaziz et al., 2016; Marzo et al., 2016).

The most trivial and intuitive voting strategy is the majority voting (MV)
rule, which assigns a chemical to the most frequently predicted class among
the pool of considered models (Ballabio, Todeschini, and Consonni, 2019;
Mansouri et al., 2013). A protective version of voting strategies can be ob-
tained by considering only those predictions with a sufficiently high con-
cordance, based on a user-defined threshold, among the pool of models. In
this thesis, we considered three different thresholds and, thus, three differ-
ent majority voting strategies: (i) majority voting loose (MVL), (ii) majority
voting intermediate (MVI), and (iii) majority voting strict (MVS). The ’loose’
approach classifies molecules according to the most recurrent class assign-
ment, i.e., with a two-class case, this corresponds to the class predicted with a
frequency higher than 50%. The ’intermediate’ and ’strict’ criteria (MVI and
MVS, respectively) are protective approaches. MVS assigns the compound
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only if the prediction agreement is higher than or equal to 75%. The MVS ap-
proach provides a prediction for a given molecule only if all of the individual
models predict the same class (100% agreement). Figure 2.12 provides three
examples of assignment.

obj. 1

obj. 2

obj. 3

M1 M2 M3 M4 M5 M6 M7 M8 M9M10

predictions

MVL MVI MVS
consensusindividual models

FIGURE 2.12: Example of majority voting strict (MVS), interme-
diate (MVI) and loose (MVL) applied to predictions provided
by ten individual models (M1, M2,..., M10) on three objects
(rows). Green and orange colours denote the class belonging.

2.5.2 Bayesian Consensus

Probabilistic method, such as Bayesian consensus, offer an alternative to the
majority voting approach. The Bayesian rule (Pradeep et al., 2016; Ballabio et
al., 2019; Fernández et al., 2012) estimates the prior probability for a molecule
to belong to a specific class for each information source and then combines
this information to provide a joint probability (Borràs et al., 2015). In partic-
ular, the Bayesian consensus with discrete probability distributions (Fernán-
dez et al., 2012) initially takes into account the first evidence, e, which is in
this case the class (active or inactive) predicted by the first model. Then, the
posterior probabilities p(hg|e) that hypothesis hg is true given evidence e are
calculated for any class g, as follows (similarly to 2.7):

p(hg|e) =
p(e|hg) · p(hg)

∑g p(e|hg) · p(hg)
(2.11)

where p(e|hg) is the likelihood probability that evidence e is observed
given that hypothesis hg is true and p(hg) is the prior probability that hy-
pothesis hg is true in the absence of any specific evidence. With two hypothe-
ses (i.e., class equal to ’active’ or ’inactive’), the prior equal (non-informative)
probability is estimated as p(hACTIVE) = p(hINACTIVE)) = 0.50. The prior pro-
portional (informative) probability for each hypothesis hg would be p(hg) =
ng
n , where ng is the number of molecules belonging to the g-th experimental

class within the n total molecules.
Likelihood probabilities for each model can be estimated from its confu-

sion matrix, where the numbers of correct and incorrect classifications are
collected (Fernández et al., 2012). Once posterior probabilities for the first
model have been calculated, the Bayes consensus proceeds with the follow-
ing iterative procedure. Posterior probabilities of the first model are used as
new prior probabilities for the second step, where the class predicted by the
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second model is the new evidence e on the basis of which the posterior prob-
abilities are calculated. These posterior probabilities become the new prior
probabilities in the third iteration and so on, until predictions of all models
have been used in the consensus process. At the end of the iterations, the
posterior probabilities corresponding to the combination of all of the infor-
mation sources are obtained.

Therefore, the Bayes consensus assigns a probability value to each class,
which is then used for prediction, by choosing the class with the maximum
posterior probability. As for the majority voting strategies, the Bayes con-
sensus can be used in a protective manner by setting a posterior probability
threshold (in this study, 95%) that has to be fulfilled to predict the class (Fer-
nández et al., 2012). When proportional prior probabilities are used with
models calibrated on data with unbalanced class distributions.

2.6 Metrics for classification performances

The evaluation of the models performances need to be evaluated on the
basis of the adopted model strategies as well as on the expected outcome.
Since this study was focused on classification problems (i.e., tasks) (Ballabio,
Grisoni, and Todeschini, 2018), the assessment of the performance is based on
the analysis of the so-called confusion matrix, which encodes the number of
both correct and incorrect predictions for each class. From this matrix, several
well-established class indices can be derived, such as sensitivity, specificity
and precision. These measures describe the classification results achieved on
each single class. Other measures are defined for the global estimation of
classification performances; accuracy being the most known and used.

Indices of global classification performance are useful to assess the model’s
quality with a single numerical value. This is particularly needed to assess
the performance of multi-task models.

Given a dataset, n denotes the number of objects and G the number of
experimental classes; ng represents the number of objects belonging to the
g− th class, while n′g the number of objects predicted in the g− th class. The
classification results can be represented in the confusion matrix, also known
as contingency table. It is a square matrix (G × G), whose rows and columns
represent experimental and predicted classes, respectively. Each entry cgk
represents the number of objects belonging to class g and predicted as be-
longing to class k. Consequently, the diagonal elements cgg represent the
number of correctly classified objects, while off-diagonal elements represent
the numbers of classification errors.

The confusion matrix contains all the information related to the distribu-
tion of objects within the classes and to the classification performance. For
instance, the number of objects in the dataset (n) is equal to the sum of all
elements of the confusion matrix:

n =
G

∑
g=1

G

∑
k=1

cgk (2.12)
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TABLE 2.2: Confusion matrix for binary classification problem.

Predicted class
Active Inactive

Experimental
class

Active TP FN
Inactive FP TN

Moreover, the number of objects belonging to the g− th class (ng) corre-
sponds to the sum of the g− th row elements:

ng =
G

∑
k=1

cgk (2.13)

The number of objects predicted in the g− th class (n′g) corresponds to the
sum of the g− th column elements:

n′g =
G

∑
k=1

ckg (2.14)

The confusion matrix is usually asymmetric, since the number of objects
belonging to class g and assigned to class k (cgk) may not be equal to the
number of objects belonging to k and assigned to g (ckg). The information on
the outcome of the classification modelling contained in the confusion ma-
trix is generally encoded into one or more classification measures (Ballabio,
Grisoni, and Todeschini, 2018).

• Primary measures related to single classes. Sensitivity and specificity
are two well-known class-based measures that can be used to estimate
the classification performance achieved on each class separately. For
example, the sensitivity of the g − th class (Sng) represents the ability
of the given classifier to correctly identify the objects of the g− th class
and is calculated as:

Sng =
cgg

ng
(2.15)

The specificity of the g− th class (Spg) represents the ability of the clas-
sifier to reject objects of other classes, and it is calculated as the ratio
of objects not belonging to the g− th class which were not classified in
the g − th class over the total number of objects not belonging to the
g− th class (n˘ng). Both sensitivity and specificity have values between
0 (no class discrimination) and 1 (perfect class discrimination). When
dealing with binary classification, these measures are defined in terms
of true/false positive/negative values and objects are usually labelled
as positive or negative and the confusion matrix is reduced to a 2 × 2
numerical table with the following structure:

where TP (true positives) is the number of positive objects correctly
predicted as positive, TN (true negatives) is the number of negative ob-
jects correctly predicted as negative, FP (false positives) is the number
of negative objects predicted as positive, and FN (false negatives) is the
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number of positive objects predicted as negative. Furthermore, In a bi-
nary classification, as in our case, usually the term sensitivity denotes
the sensitivity of the active class, while specificity denotes the sensitiv-
ity of the inactive class. Hence, sensitivity (Sn) is defined as the ratio
between TP and the total number of positive objects:

Sn =
TP

TP + FN
(2.16)

Specificity (Sp) can defined as the ratio between TN and the total num-
ber of negative objects:

Sp =
TN

TN + FP
(2.17)

• Global indices derived from primary class measures. Class measures
can be aggregated in different ways to calculate global measures of clas-
sification performances. The average sensitivity (Non Error Rate, NER)
and average precision is calculated as arithmetic mean of sensitivity
values of the G classes.

NER =
∑G

g=1 Sng

G
(2.18)

In case of binary classification NER can also be expressed as:

NER =
Sn + Sp

2
(2.19)

• Global multi-task indices. The model performance on each binary t− th
task was quantified using sensitivity (Snt), specificity (Spt) and non-
error rate (NERt), defined as follows:

Snt =
TPt

TPt + FNt
Spt =

TNt

TNt + FPt
NERt =

Snt + Spt

2
(2.20)

where TPt, TNt, FPt and FNt are the number of true positive, true neg-
ative, false positive and false negative molecules for the t− th task. To
compare the overall performance of models, ‘global’ sensitivity, speci-
ficity and non error rate measures (SnT, SpT, NERT) were computed as
follows:

SnT =
∑T

t=1 TPt

∑T
t=1 TPt + ∑T

t=1 FNt
SpT =

∑T
t=1 TNt

∑T
t=1 TNt + ∑T

t=1 FPt
(2.21)

NERT =
SnT + SpT

2
(2.22)
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where t runs over each task, and T is the total number of tasks. SnT and
SpT represent the fraction or percentage (if multiplied by 100) of active
and inactive molecules correctly predicted over all tasks, respectively.

2.7 Software

Data curation and integration was performed in KNIME 4.0.1 (Berthold et
al., 2009). SMILES were canonicalized using KNIME 4.0.1 (‘RDKit Canon
SMILES’ node). Pocket overlap scores were computed using PocketMatch
(Yeturu and Chandra, 2008) in Python v3.6.

Extended connectivity fingerprints (ECFPs) (Rogers and Hahn, 2010) were
calculated with Dragon 7 (KodeSrl, 2017) with the following settings: ’Bits
per pattern’ = 2; ’Count fragments’: True; ’Atom Options’: [Atom type, Aro-
maticity, Connectivity total, Charge, Bond order].

WHALES were calculated in Python v3.6 (Van Rossum and Drake Jr,
1995) using freely available script as descriped in (Grisoni et al., 2018b).

MultiDimensional Scaling and Principal Component Analysis were com-
puted using MATLAB v2018b (The Mathworks Inc) were performed using
in-house MATLAB 2018b or Python v3.6 code.

Structural alignment between crystallographic receptors and residue se-
lection was performed using Pymol (’The PyMOL Molecular Graphics Sys-
tem, 2018’) and in-house codes.

Single-task models were calculated and optimized in MATLAB 2019b by
means of in-house scripts. Published and freely accessible MATLAB code for
PCA, N3, and NB, KNN and RF was used, as available on Milano Chemo-
metrics website.

Multitask neural networks were built and optimized by means of the
keras (Chollet et al., 2015) module with TensorFlow (Abadi et al., 2015) back-
end in Python v3.6.

Graph convolutional networks were built and optimized by means of the
dgl (Wang et al., 2019) module with PyTorch (Paszke et al., 2017) backend in
Python v3.6.

Wilcoxon signed-ranked test and t-test were performed in Python v3.6
using the SciPy library (Virtanen et al., 2020).
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Chapter 3

Data

Due to their biological relevance, NRs have became the target of numerous
computational projects for both toxicological (Khandelwal et al., 2008; Klein-
streuer et al., 2017; Mansouri et al., 2016; Mansouri et al., 2020) and medicinal
chemistry applications (Grisoni et al., 2018b; Heitel et al., 2019; Motta et al.,
2018; Merk et al., 2018a; Park, Kufareva, and Abagyan, 2010; Rupp et al.,
2010). These computational projects are often based on machine learning
approaches, which are “data-hungry” and require as many training data as
possible to reach satisfying levels of predictivity and generalization ability
(Halevy, Norvig, and Pereira, 2009).

In this framework, the creation of datasets comprising as many experi-
mental data as possible becomes fundamental. Furthermore, since public and
commercial databases can contain up to 10% errors in structural and/or ex-
perimental annotations (Fourches, Muratov, and Tropsha, 2010; Young et al.,
2008), data curation becomes a key step in order to avoid potential inconsis-
tencies and ensure reliable molecular modeling research (Fourches, Muratov,
and Tropsha, 2010; Young et al., 2008).

Nowadays, several freely accessible databases containing information on
nuclear receptor modulation for small molecules exist (Gaulton et al., 2017;
Reau et al., 2018; Gilson et al., 2016; Tice et al., 2013). However, the type
and amount of annotated chemical structures and scaffolds, and the distri-
bution of biologically active or inactive molecules depend on the database
focus (Wassermann and Bajorath, 2011). Indeed, each of the available repos-
itories might contain different sets of compounds and investigated targets,
and may exhibit a different proportion of modulators and non-modulators
(Wassermann and Bajorath, 2011)).

This chapter begins with a description of the CoMPARA project data (Man-
souri et al., 2020) for androgen receptor, then we will discuss the creation of
a new dataset called NURA (Valsecchi et al., 2020b) that includes curated
data for eight NRs since it is generally accepted that curated data are a valu-
able resource for quantitative modeling of the structure-activity relationship
and corresponding decision making in medicinal chemistry, toxicology, and
related fields (Cronin and Schultz, 2003; Griffen et al., 2018; Tropsha, 2010;
Vangala et al., 2011).
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3.1 CoMPARA dataset

As mentioned before, data for NRs modulators are available from several
different sources. Some of them are specialized on specific nuclear recep-
tor (e.g. CERAPP (Mansouri et al., 2016) and CoMPARA (Mansouri et al.,
2020) dataset for estrogen and androgen receptor, respectively). Data coming
from medicinal chemistry related sources are more focused on very active
molecules (activity values lower than 1 uM) and on similar structures, while
toxicology related sources are interested in weak activity and collateral ef-
fects given for example by EDs.

In this section CoMPARA dataset will be described and characterized as
a source of data coming from a toxicology-related project.

CoMPARA is a collaborative project (Collaborative Modeling Project of
Androgen Receptor Activity), coordinated by the National Center of Compu-
tational Toxicology (U.S.Environmental Protection Agency) (Mansouri et al.,
2020). CoMPARA aimed to develop in silico approaches to identify poten-
tial androgen receptor (AR) modulators. This project involved 25 research
groups worldwide, which were provided with a calibration set consisting
of 1689 chemicals and the corresponding experimental annotations on bind-
ing, agonism, and antagonism activities (in the form of qualitative labels,
active/inactive), as determined by a battery of 11 in vitro assays coming from
Tox21 results (Tice et al., 2013). The research groups were then asked to pre-
dict another 55’450 chemicals for one or more endpoints (binding, agonism,
and antagonism) using their own developed QSAR models. Finally, these
predictions were merged through ad hoc consensus approaches, which are
currently being used by the CoMPARA coordinators to prioritize experimen-
tal tests for potential endocrine-disrupting chemicals.

TABLE 3.1: Number of Chemicals (Total, Actives, and Inactives)
included in the CoMPARA Binding, Antagonism, and Agonism
Evaluation Sets and Number of Models Developed within the

CoMPARA Project for Each Endpoint

binding agonism antagonism
No. chemicals 3540 3667 4408

active 411 (11.6 %) 314 (8.6 %) 164 (3.7 %)
inactive 3129 (88.4%) 3353 (91.4 %) 4244 (96.3 %)

No.models 34 22 21

The predictive ability of individual QSAR models was assessed by the
project coordinators on the basis of three specific evaluation sets, which were
embedded within the large prediction set of 55’450 chemicals, to carry out a
blinded verification. These sets were created from literature data extracted
from different sources and curated for quality, by considering target, modal-
ity, hit call, and concordance among the annotated values.

As can be noted from Table 3.1, the three data sets are characterized by
a prevalence of inactive compounds (more than 88% for all the endpoints).
In this case agonists and antagonists can not be always identified as binders,
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thus, the number of binders is lower than the sum of agonists and antago-
nists.

3.2 NURA dataset

3.2.1 Target selection

Following the retrieval pipeline of CoMPARA data collection, we aimed to
create an exhaustive dataset comprising in vitro bioactivity data on eight nu-
clear receptors, selected based on their biological relevance and data avail-
ability in public databases. The considered NRs are:

• Androgen receptor (AR), which plays a key role in many sexual, so-
matic and behavioral functions critical to lifelong health, as well as in
the development of several diseases such as prostate cancer and cardio-
vascular diseases (Davey and Grossmann, 2016).

• Estrogen receptor (ER), which is the main mediator of estrogen action
in development and reproductive system as well as in brain function,
bone maintenance, cardiovascular system and adipose tissue. Several
diseases are associated with this receptor, including osteoporosis, obe-
sity and Alzheimer’s disease (Mueller and Korach, 2001).

• Progesterone receptor (PR), which mainly affects the female sexual de-
velopment end pregnancy and it is a promising target for the treatment
of breast cancer, cardiovascular disease, and central nervous system
disorders (Huang, Chandra, and Rastinejad, 2010; Schug et al., 2011).

• Glucocorticoid receptor (GR), which plays multiple roles in physiology,
e.g., immune mediation, inflammation, glucose balance, the stress re-
sponse, fat distribution, and normal growth and is involved in the de-
velopment of several disorders, such as diabetes mellitus, hypertension
and cardiovascular diseases (Huang, Chandra, and Rastinejad, 2010).

• Peroxisome proliferator-activated receptor (PPAR), which controls lipid
homeostasis with isoform-specific lipid regulation, insulin action and
cell proliferation and is linked to obesity, dyslipidemia and atheroscle-
rosis risk (Berger and Moller, 2002; Schug et al., 2011).

• Pregnane X receptor (PXR), which regulates the detoxification and clear-
ance of xenobiotic substances, exerting a protective function (Ekins et
al., 2009; Francis et al., 2003). PXR has been associated to cancer, and
to inflammatory and metabolic diseases (Banerjee, Robbins, and Chen,
2015).

• Retinoid X receptor (RXR), which regulates metabolic homeostasis and
forms heterodimers with numerous other nuclear receptors. Drugs that
target RXR heterodimers are used to treat cancer, dermatologic dis-
eases, endocrine disorders, and the metabolic syndrome (Penvose et
al., 2019; Shulman and Mangelsdorf, 2005).
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TABLE 3.2: Summary of names, ligands, main functions and
related diseases of the eight nuclear receptors considered in this

thesis.

Acronym Ligand Main function Related disease
AR androgens Sexual maturation Prostate cancer
ERα
ERβ

estrogens Sexual maturation
and gestation

Breast cancer
obesity

FXR bile acids Homeostasis Liver cancer,
renal cancer

GR glucocorticoids
Inflammatory responses,
cellular proliferation
and differentiation

Metabolic disease
cancer

PPARα,
PPARδ,
PPARγ

fatty acids Lipid metabolism Obesity, diabetes,
atherosclerosis

PR progestogens

Regulation of gene
expression and cellular
proliferation and
differentiation

Breast cancer

PXR steroids Metabolism and
secretion of xenobiotics

Colorectal cancer,
liver cancer

RXR 9-cis retinoic acid Dimerization Renal cancer,
pancreatic cancer

• Farnesoid X receptor (FXR), or bile-acid activated transcription factor,
which contributes to the liver physiology and can be targeted to treat
metabolic and hepatic disorders (Francis et al., 2003).

Table 3.2 summarizes the main physiological roles and related diseases
for the eight most studied nuclear receptors with two and three isoforms for
ER and PPAR, respectively.

3.2.2 Data collection

In order to merge data from medicinal chemistry and computational toxicol-
ogy related database, we considered four different sources for data collection,
namely:

• ChEMBL25 (Gaulton et al., 2017), which is a large-scale, open database
containing drug-like bioactive molecules with in vitro bioactivity an-
notations. For the chosen NRs, we filtered bioactivity data referred to
single proteins (Table 3.3) according to the BioAssay Ontology (BAO)
signature (Visser et al., 2011) BAO0000190, BAO0000188, BAO0000192,
BAO0000034, BAO0000186, BAO0000199, BAO0002583, BAO0002809.
As an additional filter, we used ChEMBL25 confidence score, which is
based on the assessed record quality and ranges from 0 (non-curated
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data entries), to 9 (high-quality data), to retain compounds with confi-
dence score greater than 8 (Gaulton et al., 2017). Records annotated as
“potential transcription error” were removed (7 records). Records with
exhaustive assay type information were retained.

• BindingDB (Gilson et al., 2016), which is a public database of measured
binding affinities focusing on small, drug-like ligands; bioactivity data
referred to nuclear receptors.

• NR-DBIND (Nuclear Receptors - DataBase Including Negative Data)
(Reau et al., 2018), which is a repository dedicated to drug-like nuclear
receptor ligands. All the data referred to the selected NRs were col-
lected.

• Tox21 (NIH). The Tox21 (Toxicology in the 21st Century) program (Kle-
instreuer et al., 2017) adopts high-throughput screening (HTS) in vitro
techniques to test large numbers of chemicals that could be toxic in
vivo. For this purpose, Tox21 established a library of 10 K chemicals -
composed of environmental chemicals and approved drugs - which has
been screened against different cell-based assays. Some of these assays
(Table 3.3 focused on nuclear receptor modulation were considered in
our study. In particular, we collected the NR-related data of Tox21 from
PubChem BioAssay Repository (Kim et al., 2019). Molecules labelled
as antagonists in agonism assays (or as agonists in antagonism assays)
were removed. Records with inconclusive readouts were removed.

For ER and PPAR, for which more than 1000 isoform specific annotations
were retrieved, isoform related bioactivity data were collected separately (i.e,
alpha and beta isoforms for ER; and alpha, delta and gamma for PPAR), ob-
taining a total of 11 macromolecular targets (AR, ERα, ERβ, PR, GR, PPARα,
PPARδ, PPARγ, PXR, RXR, FXR). For the selected targets, we collected in
vitro data referred to binding, agonistic and antagonistic effects (referred to
as “endpoints”), obtaining a total of 33 endpoints. We retained the database
entries corresponding to the following two types of experimental readouts:
(i) half maximal concentration on the dose-response curve for inhibition or
effect (IC50 and EC50, respectively) and (ii) the dissociation and inhibition
constants (Kd and Ki), which describe the affinity between a ligand and a pro-
tein (with Kd measuring the equilibrium between the ligand-protein complex
and the dissociated components, while Ki being specific for inhibitors). For
Tox21, the activity concentration at half-maximal response (AC50) as deter-
mined by a panel of in-vitro assays (Tice et al., 2013) was considered.

3.2.3 Data curation

Data from different sources were collected and arranged in a record with
the following format: (i) ligand molecular structure (expressed as SMILES
strings (Weininger, 1988)), (ii) experimental readout (including the unit of
measure and the experimental response value), (iii) effect type, if available
(agonism, antagonism, binding), (iv) target organism and (v) target nuclear
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receptor (among the 11 selected, isoforms for PPAR and ER included). On
each of these records, the data curation procedure was carried out with the
following sequential steps:

1. Only records referred to Homo sapiens were retained;

2. Records with the experimental readout expressed as EC50, IC50, AC50,
Ki or Kd were retained;

3. All records referring to disconnected structures, salts, mixtures, inor-
ganic compounds and compounds containing elements different from
H, C, N, O, F, Br, I, Cl, P or S were removed. All the structures were
converted into canonical SMILES strings (O’Boyle, 2012);

4. Each record was assigned a discrete bioactivity label, according to its
experimental readout, as follows: (i) “active”, for experimental bioac-
tivities equal to or lower than 10,000 nM; (ii) “weakly active”, for ac-
tivity values between 10,000 and 100,000 nM; (iii) “inactive”, for entries
with activity values exceeding 100,000 nM. Records containing a range
of potency (specified as ‘ < ’ or ‘ > ’) were retained only if the speci-
fied range was either lower than 10,000 nM or higher than 100,000 nM
(and subsequently assigned to the “active” or “inactive” classes, respec-
tively);

5. For each target, records referred to the same molecule (as identified
by the canonical SMILES string) were merged. The information ob-
tained from such multiple records was used to assess the reliability of
the assigned label(s) for a given molecule on a given target. If all the
records for a molecule showed the same bioactivity label on a target,
the molecule-target pair was retained in the dataset. Molecules having
conflicting labels in the corresponding records for a given target and a
given endpoint (e.g., presence of both “active” and “inactive” labels)
were assigned the label “inconclusive”, to highlight the lack of a final
bioactivity assessment. Whenever a molecule was retained for at least
one of the macromolecular targets, the lack of collected bioactivity in-
formation for other targets was identified with the label “missing”.

3.2.4 Data analysis

The contribution of the individual data sources to the final dataset, in terms
of novel and shared molecules and molecular scaffold diversity and the dis-
tribution of bioactivity labels for each selected target was analysed. Finally,
a ligand- and structure-based analysis allows to obtain some additional data-
driven insights into the captured structure-activity landscapes. Each database
source provided a different contribution to the final dataset.

The final dataset contained (Figure 3.1):

• 6504 molecules from Tox21, with 150,571 activity labels in total (1.73%
active, 3.76% weakly active and 94.51% inactive), no activity labels for
RXR antagonism were retained;
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• 3951 molecules from ChEMBL, with 12,159 activity labels in total (82.29%
active, 6.28% weakly active and 11.43% inactive);

• 5491 molecules from NR-DBIND, with 13,711 activity labels (90.74%
active, 3.80% weakly active and 5.46% inactive), no activity labels for
PPARα were retained;

• 1125 molecules from BindingDB, with 1570 activity labels (81.21% ac-
tive, 6.18% weakly active and 12.61% inactive), no activity labels for
RXR and PXR antagonism and for PPARα were retained

As already seen for CoMPARA data, Tox21 data contains a larger num-
ber of inactive compounds (94.51%), mostly due to its focus on toxicological
evaluation of man-made chemicals. On the contrary, medicinal chemistry
databases focus mostly on bioactive compounds (82.29%, 90.74% and 82.29%
for ChEMBL, NR-DBIND and BindingDB, respectively) (Reau et al., 2018).

We extracted the most frequent atomic molecular scaffolds (Bemis and
Murcko, 1996) for each source to investigate the structural similarity between
the molecules annotated in the considered data sources. 1713 molecules out
of 15,247 (11%), corresponding to 701 unique scaffolds out of 4334 (16%), are
shared among two or more sources (Figure 3.1B). Most of the common scaf-
fold (576, corresponding to 13% of the total) are shared between the sources
aiming at medicinal chemistry applications, i.e., ChEMBL, BindingDB and
NR-DBIND. This reflects a certain similarity of the chemical space covered by
these sources. At the same time, each source contributes with unique atomic
scaffolds i.e., 1680 novel scaffolds contained in Tox21 (39%), 803 in ChEMBL
(19%), 1043 in NR-DBIND (24%) and 107 in BindingDB (2%). These aspects
highlight the benefit of merging different sources to expand the atomic scaf-
folds covered in the curated dataset.

Additionally, Tox21 covers a significantly different property space (Fig-
ure 3.1C i.e., molecular weight, lipophilicity, number of aromatic rings and
rotatable bonds; p < 0.05, t-test) than the other databases.

In order to further investigate the overlap of the considered chemical
sources, we represented the chemical space of NURA dataset by means of
a multidimensional scaling (MDS), which compresses the information on
molecular similarity in a two-dimensional plot (Figure 3.2A). In this repre-
sentation, regions mainly characterized by molecules labelled as active can be
identified (Figure 3.2A). These regions correspond in particular to the over-
lap between ChEMBL, BindingDB and NR-DBIND molecules (Figure 3.2B).
The main region of overlap (Figure 3.2B, i) contains drug-like compounds
with heteroaromatic rings and alicyclic compounds with alkyne bonds and
hydroxyl functional group, while a smaller region of overlap contains ali-
cyclic compound with hormone like scaffolds (Figure 3.2B ii). On the con-
trary, Tox21 molecules occupy different regions, mostly characterized by in-
active molecules, which also contain inactive linear aliphatic compounds
(Figure 3.2B, iv). Finally, BindingDB contributes a unique set of molecules
binding to RXR (Figure 3.2B, iii), containing triazole and pyridine heterocy-
cles with fluorine substituents.
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FIGURE 3.1: Analysis of the individual sources used to de-
velop NURA dataset. (A) Percentage of records labelled as ac-
tive (activity lower than 10,000 nM), weakly active (activity be-
tween 10,000 nM and 100,000 nM) and inactive (activity higher
than 100,000 nM) grouped by data source. (B) Venn diagram
of the data collected from Tox21, ChEMBL, NR-DBIND and
Binding-DB. The numbers of shared and not shared molecules
(in bold) and scaffolds are reported; (C) distribution of molec-
ular weights (MW), number of aromatic rings, rotatable bonds
and octanol-water partition coefficients (LogP) per data source.
Tox21 molecules have statistically significant (p < 0.05, t-test)
values in the computed properties compared to the other data
sources. (D) Three most frequently occurring scaffolds present
in only one source and in all sources (the frequency reported
as percentage). Roman numerals correspond to the set the scaf-

folds belong to, as specified in (B).

The aggregation and curation of data from the selected sources led to
a dataset containing 15,247 molecules with activity annotation for 33 end-
points, i.e., 11 NRs with the respective labels for three activity modulations
(“binding”, “agonism” or “antagonism”, Figure 3.3). Each endpoint contains
on average 4.5 k molecules with annotated activity. The endpoints with the
highest number of annotations are the PPARγ binding (7362 molecules), GR
binding (7128 molecules) and ERβ binding (6779 molecules). The endpoints
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relative to antagonism on RXR (119 molecules), PPARα (19 molecules) and
PXR (10 molecules) contain the lowest number of annotations. The dataset
contains a different balance between active and inactive chemicals depend-
ing on the endpoint considered. For instance, antagonism on RXR, binding
and agonism on PPARα show the largest percentage of molecules labelled
as active (96.7%, 89.2%, 90.9%, respectively), while the endpoints relative to
PPARδ antagonism, PPARγ antagonism, and FXR antagonism mainly com-
prise inactive molecules (99.1%, 95.6% and 94.8%, respectively). 87% of the
molecules have an activity label for at least two endpoints, with an average
of 11 annotations (over the 33 endpoints) per molecule.

3.2.5 Data driven insights

Data analysis is a key step in every machine learning pipeline. Therefore, to
gain more information on the data and verify if the NURA dataset is suitable
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for multi-task learning (Xu et al., 2017) two types of post-hoc analysis were
performed:

• a “ligand-centric” analysis, which is aimed to identify active ligands
shared among different endpoint. We considered the number of active
molecules shared between pairs of endpoints as a measure of overlap.
For any given pair of endpoints (i and j), the overlap in their activity
annotations (Sij) was calculated using the following index:

Sij =
a

a + b
(3.1)

where a is the number of molecules active for both endpoints i and
j; b is the number of molecules with different activity labels for i and
j. Therefore, Sij gives the fraction of molecules annotated as actives
in both endpoints, without considering the presence of shared inactive
molecules. Note that weakly active molecules were not considered in
this analysis.
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• a “pocket-centric” analysis, which is aimed to identify correlation pat-
terns of the binding pockets. The selected NRs were evaluated for
the overlap of their binding pockets, using the PocketMatch algorithm
(Yeturu and Chandra, 2008). PocketMatch compares the binding site
in a frame-invariant manner, by calculating 90 lists of sorted distances
capturing the shape and the chemical nature of the site. The algorithms
provide a score (PMscore) ranging from 0 to 100 for any considered pair
of binding sites; the greater the score, the higher the overlap. For this
analysis we used the crystallographic structures of ligand-nuclear re-
ceptor complexes from the PDBbind database (“PDBbind 2018”) sum-
marized in Table 2.1.

As expected, binding-agonism and binding-antagonism pairs for the same
nuclear receptor are characterized by high overlap of active molecules (frac-
tion of common active molecules higher than 0.66 and 0.85, respectively Fig-
ure 3.4), while little to no overlap is present for agonism-antagonism pairs
(lower than 24% of shared actives for all targets). The only exception is RXR,
where only one molecule is shared (5-Fluorinated trienoic acid), which be-
haves as both agonist and antagonist (Gernert et al., 2003). AR, GR and PR,
as well as PPAR and ER isoforms show an high fraction of common active
molecules, i.e. 0.85, 0.91, and 0.94 between AR-GR, AR-PR and GR-PR for
binding, respectively; 0.95 between ERα-ERβ for binding; 0.99, 0.99 and 0.88
between PPARα-PPARδ, PPARα-PPARγ and PPARδ-PPARδ, respectively.

To analyze the physico-chemical, volumetric and geometrical diversity
of the binding pockets of the chosen receptors, we calculated the median of
the PMscores for each pair of targets (Figure 3.4B). The diagonal values are
computed using different crystallographic structures of the same receptor,
and, thus, they represent both the experimental uncertainty in the crystal-
lographic structure and the pocket flexibility. The lowest diagonal scores
are those of ERα and PPARα. Despite the studied receptors belong to the
same superfamily, some diversity in the pocket features can be observed,
with the lowest PMscore being equal to 62. This highlights a good coverage
of the dataset in terms of included receptors, which might possess relatively
different binding pockets. This binding pocket analysis might be an addi-
tional support to complement structure-activity investigations in the field of
polypharmacology and/or selectivity optimization for nuclear receptors.

To further compare the ligand-centric and the pocket-centric analysis, we
applied hierarchical clustering to both ligand-based overlap scores (Figure
3.4C) and structure-based scores (PMscores, Figure 3.4D).

Despite molecules annotated as binders might not necessarily bind in
the orthosteric site, a good overlap between the ligand-based and structure-
based hierarchical clustering can be observed (Figure 3.4). The ligand- and
structure-based dendrograms reproduce some of the known evolutionary re-
lationships, i.e., among ERα and ERβ, PPAR subtypes, or among the steroid
hormone receptors GR, PR, and AR (Mangelsdorf et al., 1995; Edman et al.,
2015). The good correspondence between the ligand- and structure-based
information indicates a good coverage of the obtained dataset, in terms of



3.2. NURA dataset 57

A B

AR ERα ERβ FX
R GR

PPA
Rα
PPA

Rδ
PPA

Rγ PR PX
R

RXR 

AR

ERα

ERβ

FXR

GR

PPARα

PPARδ

PPARγ

PR

PXR

RXR 

70

74

76

85

78

83

77

85

81.5

66

70

80

77

74

70

72

74

77

68

66

71

74

77

68

67

68

71

73

67

62

62

76

74

68

71

76

79

81

72

76

78

85

70

67

71

76

79

76

85

78

63

78

72

68

76

76

80.5

84.5

80

78

76

73

83

74

71

79

79

84.5

85

80

80

70

77

77

73

81

76

80

85

75

75

73

85

68

67

72

85

78

80

75

79

64.5

81.5

66

62

76

78

76

80

75

79

82.5

69

66

71

62

78

63

73

70

73

64.5

69

95

90

93

87

91

88

91

90
65

70

75

80

85

90

95

AR ERα ERβ FX
R GR

PPA
Rα

PPA
Rδ

PPA
Rγ PR PX

R
RXR 

AR

ERα

ERβ

FXR

GR

PPARα

PPARδ

PPARγ

PR

PXR

RXR 

PPAR

PPAR

PPAR

AR

GR

PR

ER

ER

FXR

RXR

PXR

0.6 1.0 1.4 1.8

GR

PR

AR

PXR

FXR

PPAR

PPAR

PPAR

ER

ER

RXR

C D

0.1 0.2 0.3 0.4

FIGURE 3.4: Summary of the data-driven analysis. (A)
Heatmap of the degree of shared active molecules calculated
on pair of endpoints considering only active and inactive la-
bels. The colors indicate the degree of shared active molecules
from blue (high) to white (low) scores. Black color highlights
endpoints that do not have any ligand in common (“NaN”).
(B) Dendrogram derived from the degree of shared active
molecules calculated on pair of endpoints and targets consider-
ing only active and inactive labels. (C) Heatmap of the median
of the PMscores for each pair of targets, the darker, the higher
the PMscore. (D) Dendrogram derived from the median of the
PMscores for each pair of targets, the darker the blue the higher

the PMscore.

structure-activity relationships represented. The observed correspondence
is, in fact, not always obtained by considering each source separately.
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The overlap between the analyzed endpoints (both in terms of ligands
and pockets) makes NURA suitable for the application in multi-task learn-
ing approaches. Indeed, the target correlation play a fundamental role when
dealing with neural networks multi-task learning (Caruana, 1997; Ramsun-
dar et al., 2015; Sadawi et al., 2019; Xu et al., 2017).

3.3 Summary of results and concluding remarks

Studying data collected in the CoMPARA project (Mansouri et al., 2020), a
need of an integration between medicinal-chemistry and toxicology-related
database was underlined. Hence, aiming to build a comprehensive dataset
on nuclear receptor bioactivity, we integrated and curated information on
binding, agonism and antagonism for 11 selected nuclear receptors, using
four well-known chemical databases. The resulting dataset, NURA, includes
15,247 molecules with binding, agonism and/or antagonism annotations for
11 NRs, with 11 endpoints annotated on average per molecule. The data
curation and aggregation pipeline successful allowed to bridge the gap be-
tween toxicology-related databases (containing information mostly on inac-
tive molecules) and medicinal-chemistry-related databases (mostly focusing
on the chemical space of bioactive compounds). Our results show that NURA
dataset is enriched in terms of number of molecules, structural diversity and
covered atomic scaffolds compared to the single sources.

NURA dataset is the most exhaustive collection of small molecules anno-
tated for their modulation of the chosen nuclear receptors. NURA can serve
as a basis to develop machine learning methods for toxicological and/or
medicinal chemistry applications, e.g., to predict the modulation of a panel
of receptors or the selectivity among the selected NRs. In fact, the increased
coverage of the chemical and bioactivity space and of atomic scaffolds offers
the opportunity to develop models with an increased applicability domain
and improved robustness compared to those developed on the single sources
of data. Moreover, for most of the receptors, the data aggregation improved
the balance between active and inactive molecules. NURA dataset can be
downloaded for free via Zenodo.

In the next chapter, CoMPARA evaluation set is considered to investigate
the benefit of consensus approaches, while NURA dataset is the data basis
to enhance the prediction of NRs modulators as described in the following
chapters.

https://zenodo.org/record/3999420#.YPgb-cTiuUk
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Chapter 4

Consensus analysis of CoMPARA
models

As mentioned in Chapter 2, consensus approaches aim to combine and in-
tegrate information derived from different sources to increase the outcome
reliability and overcome limitations of single approaches. In the framework
of QSARs, they are generally recognized as valuable tools to reduce the ef-
fects of underestimating uncertainties in the prediction of biological activities
(Neumann and Gujer, 2008; Weber, VanBriesen, and Small, 2006).

The main underlying assumption of consensus modeling in QSAR is that
individual models, due to their reductionist nature, consider only partial
structure-activity information, as encoded by the considered molecular de-
scriptors and adopted algorithms. Thus, the combination of multiple QSAR
predictions may provide a wider knowledge and increase the reliability as-
sociated with the predictions compared to individual models (Hewitt et al.,
2007; Jaworska and Hoffmann, 2010).

Although recent studies on the improvement achieved with large scale
consensus approaches for regression models can be found in the literature
(Zakharov et al., 2019; Ambure et al., 2019), to the best of our knowledge,
no thorough evaluation of the consensus versus single classification models
performance has been carried out to date, since only a few QSAR models are
usually available for the same endpoint (Baurin et al., 2004; Hanser et al.,
2016; Mansouri et al., 2016).

The present study was based on the evaluation sets of CoMPARA (Man-
souri et al., 2020) project, which comprise experimental values on androgen
receptor (AR) modulation and corresponding QSAR predictions, namely, (i)
binding to AR (34 QSAR models), (ii) AR antagonism (22 QSAR models), and
(iii) AR agonism (21 QSAR models). CoMPARA was chosen as a test system
due to the large availability of diverse QSAR-based predictions.

In the framework of CoMPARA project, two ad hoc consensus approaches
were applied by combining predictions with a weighting score based on
the goodness-of-fit, predictivity, and robustness of models (Mansouri et al.,
2020).

However, the aim of the reported study was not a comparison with these
former consensus approaches, which were specifically targeted to screen and
prioritize chemicals for endocrine activity, but the systematic investigation
of the advantages of further consensus strategies compared to single QSAR
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models. To this end, approaches with varying levels of complexity (major-
ity voting and Bayesian methods, in both protective and non-protective ver-
sions) were considered.

Furthermore, we investigated the influence of the exclusion of the worst-
performing models on the consensus outcome, in terms of chemical space
coverage and predictive performance (Chauhan and Kumar, 2018; Asturiol,
Casati, and Worth, 2016).

Finally, a structural similarity analysis was carried out to identify specific
chemical regions where individual QSAR models, and the respective consen-
sus outcome, fail in their predictions.

The three CoMPARA evaluation sets included 3540 chemicals annotated
with binding activities, 4408 with agonism, and 3667 with antagonism. All
evaluation sets are characterized by unbalanced sample distribution toward
inactivity with 88.4, 91.4, and 96.3% of inactive chemicals for binding, antag-
onism, and agonism, respectively as reported in Table 3.1.

Although the project coordinators also provided quantitative binding, ag-
onism, and antagonism activities, the participants developed only a few re-
gression models (five, five, and three for binding, agonist, and antagonist,
respectively). For this reason and since this thesis is focused on classifica-
tion problems, we considered, only classification models for consensus ap-
proaches to allow for a comprehensive and systematic analysis.

CoMPARA consortium members trained QSAR models to classify chem-
icals for their potential of AR binding (34 models), agonism (21 models), and
antagonism (22 models). Models were mainly developed on the same cali-
bration set of 1689 chemicals, using different modeling strategies (e.g., arti-
ficial neural networks, k-nearest neighbors, support-vector machines, partial
least squares discriminant analysis, classification trees) and molecular de-
scriptors (e.g., binary fingerprints and nonbinary descriptors)(Mansouri et
al., 2020).

Each submitted prediction was associated with the applicability domain
(AD) assessment. The percentage of reliably predicted chemicals (coverage,
Cvg, i.e. percentage of molecules in AD) was used as an additional criterion
to assess the model performances.

4.1 Individual QSAR Models

Figure 4.1 summarizes the distribution of the classification estimators of the
individual CoMPARA models for the three modeled endpoints.

All models have a good predictive performance, with the median NER
ranging from 71.0% (antagonism) to 83.8% (agonism). All models identify
better inactive than active compounds and, thus, specificity values (Sp) are
always higher than sensitivities (Sn). Except for the agonism endpoint, sen-
sitivity is associated with an higher variability than specificity, with values
ranging from ∼ 20 to ∼ 80% on both binding (relative standard deviation
equal to ∼ 28%) and antagonism (relative standard deviation equal to ∼
29%) endpoints. The main reasons of this general behavior can be identified
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in the data class unbalance for binding and antagonism endpoints, which are
strongly skewed toward inactivity (88.4 and 91.4% of inactive molecules for
binding and antagonism data sets, respectively; Table 3.1), and in the differ-
ences in the ranges of testing between training and evaluation sources, as
reported in the literature (Mansouri et al., 2020).

The models for agonism show the best trade-off between sensitivity (Sn)
and specificity (Sp), with most models characterized by sensitivity values in
the range of ∼ 70 to ∼ 84% and specificity in the range of ∼ 76 to ∼ 100%.

In particular, agonism models have the highest median sensitivity (76.2%),
specificity (96.3%), and NER (83.8%), although the agonism data set includes
only 3.7% of actives and is thus the most unbalanced among the three evalu-
ation sets (see Table 3.1).
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FIGURE 4.1: Violin plots of sensitivity (Sn), specificity (Sp), non-
error rate (NER), and coverage (Cvg) for the individual CoM-
PARA models on the binding, antagonism, and agonism evalu-
ation sets. Thin black lines indicate the first and fourth quartiles
and the mean values. Shapes indicate the underlying data dis-

tribution.

Models for binding and antagonism have similar median NERs (74.8 and
71%, respectively), moderately low median sensitivities (64.1 and 55.9%), and
high median specificities (88.3 and 85.5%).

The majority of individual models are characterized by a high percentage
of reliably predicted chemicals (coverage values equal to 88.1, 88.1, and 89.5%
on average for binding, antagonism, and agonism, respectively).

The models with the lowest coverage are associated with the highest clas-
sification performance, thus confirming that high classification performance
is more likely on a narrow applicability domain.

In fact, the four best models to predict the binding activity (NER higher
than 80%) were characterized by a limited percentage of chemicals in their
applicability domain (coverage values equal to 13, 43.7, 60.7, and 69%), sug-
gesting that these single models have limited applications for prioritization
purposes.
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4.2 Analysis of Consensus Strategies

The selected five consensus strategies (i.e., Bayes [B], protective Bayes [Bp],
majority voting loose [MVL], majority voting intermediate [MVI], and ma-
jority voting strict [MVS]) were used to integrate the predictions of the indi-
vidual QSAR models for binding, antagonism, and agonism endpoints.

When applying protective consensus strategies, the outcome predictions
were rejected if related to potential uncertainty, that is, (i) prediction agree-
ment lower than 75 and 100% for MVI and MVL, respectively, and (ii) poste-
rior probability lower than 95% for protective Bayes.

For majority voting loose (MVL), no prediction was provided in the case
of equal frequency for the two classes (50%).

In analogy with the individual models, the consensus approaches were
evaluated for their classification performance, in terms of sensitivity (Sn),
specificity (Sp), non-error rate (NER), and coverage (Cvg) (Table 4.1).

A graphical comparison with individual models is reported in Figure 4.2
with plots of sensitivity versus specificity values. Moreover, since sensitivity,
specificity, and coverage have the same unit scale and optimality direction
(i.e., ranging from 0 to 100%; the closer to 100%, the better), an overall per-
formance index was calculated as their arithmetic average, denoted as “Util-
ity” in the framework of ranking analysis and multicriteria decision making
(Sailaukhanuly et al., 2013; Keeney, Raiffa, and Meyer, 1993; Hendriks et al.,
1992).

Both consensus and individual QSARs were ranked for decreasing values
of Utility (last row in Table 4.1). On average, consensus strategies have better
NERs than individual QSAR models, without a substantial losses in terms of
coverage compared to individual models; additionally, consensus models are
always ranked among the top 10 positions (Table 4.1). The exception is MVS,
which provides a remarkably lower coverage (lower than 52% for all of the
endpoints), due to the required 100% agreement among multiple predictions
(up to 34 predictions).
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FIGURE 4.2: Plot of sensitivities (Sn) versus specificities (Sp)
for the individual models (black empty circles) and for the con-
sensus approaches (filled, colored circles) for each endpoint:
(A) binding, (B) antagonism, and (C) agonism. Orange, red,
blue, green, and black circles indicate Bayes (B), Bayes pro-
tective (Bp), majority voting intermediate (MVI), loose (MVL),
and strict (MVS) consensus, respectively. The size of the cir-
cles is proportional to the coverage (Cvg); the smaller a circle,
the lower the coverage. Isolines represent NER variations (5%

steps).
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The low coverage of MVS, however, was not counterbalanced by a bet-
ter performance compared to the other consensus approaches. MVS, in fact,
showed the lowest NER and Cvg values among all of the tested consensus
strategies. For these reasons, MVS was not analyzed further in this frame-
work. Except for MVS, the other consensus strategies have generally shown
a better trade-off between classification performance and chemical space cov-
erage than individual QSARs. For instance, the two single models for bind-
ing endpoint falling in the upper-right region of the sensitivity versus speci-
ficity space (Figure 4.2A) provided the best predictive performance for bind-
ing, with NERs equal to 85.5 and 83.8%, respectively, but they cover only
a limited portion of the chemical space, i.e. they have a small coverage
(43.7 and 60.7%, respectively). On the other hand, the protective Bayes (Bp)
reached a slightly lower NER (79.6%) but a significantly higher coverage
(96.1%).

The models on binding and antagonism (Figure 4.2A,B) endpoints are
characterized by the unbalanced specificity and sensitivity values, with sev-
eral models showing high specificity (Sp > 90%) and low sensitivity (Sn <
50%). For these endpoints, consensus methods achieved more balanced val-
ues of sensitivity and specificity, due to the compensation in the integration
of diverse sources of information. This is particularly evident in the case of
the Bayes approaches (Table 4.1), ranked as the best overall approach for both
binding and antagonism, and confirms that the uncertainty can be reduced
by the integration of conflicting sources. The difference in the performance
between consensus and individual QSARs is less pronounced when consid-
ering agonism (Figure 4.2C), since the individual models have more homo-
geneous NERs and balanced Sn and Sp values compared to the other case
studies.

Therefore, consensus methods converged to similar performances. Major-
ity voting approaches derive the high specificity values of individual models
for both binding and antagonism endpoints, while the Bayes consensus led to
a higher sensitivity. This trend could be caused by the low false positive rates
of individual models (Figure 4.1) and the way this information is weighted
and integrated into the Bayes calculation (eq 2.11). Thus, in this framework,
if a compound is predicted with an equal frequency as active and inactive by
the individual models, it will be more likely assigned to the active class by the
Bayes consensus. Protective approaches (MVI and Bp) yielded slightly better
results in terms of the classification performance (NER) compared to their
non-protective counterparts, but with a relatively larger loss in coverage (up
to 18.7% loss), especially when dealing with majority voting schemes. This
explains the worse position within the ranking of protective approaches with
respect to non-protective ones (Table 4.1). As an example, the MVL approach
on the binding endpoint led to an NER of 76.8% and a coverage of 99.3%
(rank 4), while the protective MVI led to a slightly higher NER (79.5%) but
considerably lower coverage (80.6% and a worse rank (8).

To evaluate the existence of potential associations between misclassifica-
tions and structural chemical features, molecular structures were encoded
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TABLE 4.1: Classification Performance of the Consensus Ap-
proaches for Binding, Agonism, and Antagonism Endpoints.
For each consensus approach, sensitivity (Sn), specificity (Sp),
non-error rate (NER), coverage (Cvg), and total ranking are re-
ported. B, Bayes; Bp, protective Bayes; MVL, majority voting
loose; MVI, majority voting intermediate; MVS, majority vot-

ing strict.

Endpoint Performance consensus approach
MVL MVI MVS B Bp

Binding (34 models) Sn (%) 61.8 60.6 26.9 72.3 73.3
Sp (%) 91.8 98.3 100 84.9 85.9
NER (%) 76.8 79.5 63.5 78.6 79.6
Cvg (%) 99.3 80.6 37.5 100 96.1
rank 4 8 39 1 7

Antagonism (22 models) Sn (%) 61.5 60 39 71 73.5
Sp (%) 87.3 93.8 99.2 81.2 82.9
NER (%) 74.4 76.9 69.1 76.1 78.2
Cvg (%) 98.9 80.1 42.4 100 92.9
rank 3 4 25 1 2

Agonism (21 models) Sn (%) 73.8 76.1 64.8 74.4 75.8
Sp (%) 97.5 99 99.9 95.1 95.9
NER (%) 85.7 87.5 82.3 84.7 85.9
Cvg (%) 99.7 91.5 51.4 100 97.7
rank 2 6 17 3 4
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by extended connectivity fingerprints (ECFPs). We then performed a multi-
dimensional scaling (MDS) on the computed ECFPs to visualize the Jaccard-
Tanimoto similarity coefficients in a bidimensional plot.

FIGURE 4.3: Plot of the first and second dimensions of the MDS
(ECFPs, Jaccard-Tanimoto similarity). Each point represents a
chemical, colored based on the number of misclassifications of
individual QSAR models for binding, antagonist and agonist
endpoint (A, C and E, respectively) and consensus strategies
(B, D and F, respectively); the darker the point, the higher the
number of misclassifications. The size of each point is propor-
tional to the percentage of models or consensus strategies that

provided a prediction for the chemical.
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This allowed us to analyze the relationship between such a structural rep-
resentation and the number of models (individual or consensus), providing
reliable predictions.

In the obtained MDS representation for the binding endpoint (Figure 4.3A-
B), chemicals are arranged in two clusters. The cluster characterized by neg-
ative scores on the first dimension for the binding endpoint (Figure 4.3A,B)
is mainly composed of aliphatic molecules with long alkyl chains, as well as
cyclic aliphatic compounds, mostly with sp3-hybridized carbon atoms. In
this cluster, the most frequent functional groups are carbonyls, hydroxyls,
ethers, and esters, while conjugated structures or p-systems are almost ab-
sent.

The second cluster, located in the positive score region on the first dimen-
sion, is mainly composed of conjugated structures, primarily aromatic rings
with many electron acceptor substituents (e.g., -NO2, -PO3, -SO3, -F, -Cl, and
-CO) and a few donating groups (e.g., -NH2 and -OH). Most of the misclas-
sified molecules cluster in specific regions of the chemical space. Aliphatic
chemicals (characterized by negative scores on the first dimension for the
binding endpoint) are in general well-predicted; on the other hand, misclas-
sifications seem to be mainly grouped in the aromatic cluster (positive scores
on the first dimension). Besides incorrect predictions, this region is also asso-
ciated with lower coverage of the individual models (Figure 4.3A). Similarly,
the intermediate region between the two clusters is characterized by low cov-
erage, reflecting regions of model uncertainty.

Similar distributions were obtained for agonism and antagonism data sets
(Figure 4.3C-F).

These observations seem to confirm the existence of a relationship be-
tween chemical features (as encoded in ECFPs) and model performance, since
misclassifications are primarily found in limited portions of chemical space,
where molecules are often outside the domain of model applicability.

The following chemicals were misclassified by all individual QSAR mod-
els despite falling in their domain of applicability: 19 molecules for binding
(all false negatives), 28 for agonism (25 false negatives and 3 false positives),
and 37 for antagonism (25 false negatives and 12 false positives). We identi-
fied some recurrent problems that could explain the observed misclassifica-
tions:

• Borderline Compounds. Several active molecules that were consistently
predicted as inactive are labeled as having experimental weak or very
weak potency (Table 4.2), as quantified by the half-maximal activity
(AC50, the molar concentration that produces 50% of the maximum pos-
sible activity). The molecules were thus labeled as active, but they ac-
tually are borderline between activity and inactivity. Additionally, dif-
ferent activity values due to differences among experimental protocols
have been already reported on this set of chemicals (Mansouri et al.,
2020). In such cases, models and experimental data can be regarded as
belonging to the same level of assessment (Vighi et al., 2019) and QSAR
models might provide an indication of the potential inactivity of these
consistently misclassified compounds.
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• Differences between Charged and Neutralized Forms. Another reason
could be related to the different activities of charged compounds to-
ward their neutralized counterparts. In fact, traditional QSAR pipelines
do not consider annotated counterions and rely on the neutralized form
for descriptor calculations. Nine false negatives (two, one, and six for
binding, antagonism, and agonism sets, respectively) showed a differ-
ent activity in their neutralized form and with an annotated counterion
(Table 4.2). For example, 1-butyl-4-methylpyridinium hexafluorophos-
phate (DTXSID4049296, CASRN 401788-99-6) is a moderate antagonist
(AC50 = 1.94µM), but its neutralized form is identical to the neutral-
ized forms of 1-butyl-4-methylpyridinium bromide (DTXSID2049345,
CASRN65350-59-6) and 1-butyl-4-methylpyridinium trifluoro methane-
sulfonate (DTXSID5049368, CASRN 882172-79-4), which are inactive.
This highlights the need for considering the effect of charge and coun-
terions on the final biological activity.

Although consensus methods reduced the uncertainty (Figure 4.3B-D-F), mis-
classifications and unclassified chemicals are still mainly located in the criti-
cal regions (e.g. positive scores of the MDS space for binding endpoint), thus
following the same pattern as individual models. This corroborates that con-
sensus approaches can reduce uncertainty but cannot eliminate it altogether,
as the integration of incorrect information still leads to poor predictions. The
performance of consensus models could improve by considering the struc-
tural characteristics of chemicals and the performance of individual models
in chemical space.

TABLE 4.2: Summary of the molecules which were considered
outside the applicability domain or misclassified by all the in-
dividual QSAR models. FPs and FNs stand for false positive
and false negatives, respectively. Number of FN molecules with
concentration of half maximal activity (AC50) above 20 µM (bor-
derline compounds) and with at least a correspondent inactive

neutralized form are listed.

FNs FPs

Borderline
compounds

Differences
between charged
and neutralized forms

others Total Total

Binding 12 2 5 19 0
Antagonism 14 1 10 25 12
Agonism 3 6 16 25 3

4.2.1 Consensus Based on Subsets of Models

When integrating multiple sources of information, one might decide to se-
lect only the most reliable ones with the goal of neglecting misleading infor-
mation and potentially improving prediction performance. To this end, we
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studied the performance of consensus strategies as a function of the num-
ber of individual QSAR models considered, sorted by decreasing predictive
performance.

For each endpoint, subsets of models were selected as inputs for consen-
sus approaches using the following strategy: (i) individual QSAR models
were ranked according to their NER; (ii) consensus approaches were calcu-
lated by iteratively adding one model at a time, starting from an initial subset
that included the best five (Figure 4.4).
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FIGURE 4.4: Plot of NER and coverage as a function of the num-
ber of models included in the consensus calculation. B, Bayes;
Bp, protective Bayes; MVL, majority voting loose; MVI, major-

ity voting intermediate; MVS, majority voting strict.

The NERs of B, MVI, and MVL are only slightly influenced by the number
of included models. It can be concluded that these methods are not sensitive
to the integration of poor sources of information in the consensus process.
On the contrary, the protective Bayes approach (Bp) is characterized by bet-
ter performances when a few good models are included, at the expense of
the coverage, which shows a considerable decrease. Therefore, when the
maximization of the prediction reliability is the only priority, only the most
reliable sources of information shall be used in the consensus.

When the final goal is to screen a large set of chemicals for testing prior-
itization the inclusion of all of the available sources of information can con-
siderably enhance the coverage without a significant loss of performance.

MVS is the consensus approach showing the highest dependence on the
number of included models; in particular, as soon as spurious information
sources enter in the consensus process, the coverage significantly decreases.
Table 4.3 collects the classification performance of consensus approaches cal-
culated on the top five models (chosen based on NER), which is on average
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TABLE 4.3: Classification Performance of the Consensus Ap-
proaches Estimated on the Binding, Antagonism, and Agonism
Sets Considering the Best Five Models Only (Selected Based on
NER). For each consensus approach, sensitivity (Sn), specificity
(Sp), non-error rate (NER), coverage (Cvg), and total ranking
are reported. B, Bayes; Bp, protective Bayes; MVL, majority
voting loose; MVI, majority voting intermediate; MVS, major-

ity voting strict.

Endpoint Performance consensus approach
MVL MVI MVS B Bp

Binding (5 models) Sn (%) 63.9 65.7 63.8 72 88.3
Sp (%) 97.7 99.3 99.5 91 96.2
NER (%) 80.8 82.5 81.6 81.5 92.2
Cvg (%) 92.8 88.4 87.4 100 58.6
rank 3 4 6 1 7

Antagonism (5 models) Sn (%) 71.6 71.9 78.3 73.2 79.4
Sp (%) 82.8 84.4 87.6 79.7 85.5
NER (%) 77.2 78.1 83 76.5 82.4
Cvg (%) 96.5 90.9 74.4 100 76.3
rank 2 3 5 1 4

Agonism (5 models) Sn (%) 73.8 74.1 73.1 74.4 76.1
Sp (%) 98.8 99 99.2 96.1 98.2
NER (%) 86.3 86.5 86.1 85.2 87.1
Cvg (%) 98.6 97 95.8 99.9 90
rank 2 4 6 3 7

better than that of individual models, with consensus strategies occupying
the first seven ranking positions for all of the three considered case studies.

The protective consensus (Bp, MVI, and MVS) obtained on this reduced
pool of models provided higher sensitivities than those based on the inte-
gration of all available models (Table 4.1), especially for binding and antag-
onism. However, protective approaches are always ranked worse than the
non-protective counterparts.

Finally, the performance of MVS improves, since it is easier to reach a
100% prediction agreement with a few input models compared to using the
whole set. For example, for binding endpoints, the NER increased from 63.5
to 81.6% and the coverage increased from 37.5 to 87.4%, respectively.

4.3 Summary of results and concluding remarks

In this chapter, we evaluated the extent to which consensus modeling can
outperform individual QSARs, by leveraging a large set of QSAR model pre-
dictions on androgen receptor binding, agonism, and antagonism.
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The protective and non-protective majority voting and Bayes consensus
methods were evaluated for their capability to reduce the prediction uncer-
tainty, increase the classification performance, and overcome limitations of
individual QSAR models.

The applied consensus strategies provided a better trade-off between the
classification performance and the number of reliably predicted chemicals
compared to single QSARs. In fact, consensus methods could correctly weigh
in and integrate diverse sources of information, leading to balanced values
of sensitivity and specificity, as well as to increased coverage compared to
the average of individual QSARs. Only a few models could perform better
than consensus in terms of classification indices, but they included a limited
percentage of chemicals in their applicability domain.

Protective consensus approaches were found to be suitable to incorporate
information of less reliable predictions into the final assessment, thereby pro-
viding a slightly better classification performance, at the expense of the cov-
erage. However, consensus strategies were not able to perform well in those
critical regions of the chemical space where most of the individual models
failed, since the integration of erroneous information leads, by definition, to
poor predictions.

Implementation of a structure-driven model selection could help over-
come these limitations of consensus approaches.

The performance of consensus strategies was finally evaluated as a func-
tion of the number of models included in the integration approach. The
difference in terms of the classification performance between non-protective
consensus strategies applied to all of the available models and to the subset of
the five most reliable ones is on average around 1% of the non-error rate (bal-
anced accuracy). Therefore, the performance of non-protective strategies was
not significantly influenced by the presence of poorly predictive individual
models, thus again demonstrating the ability of these methods to weigh in
and integrate conflicting information. On the contrary, protective approaches
benefit from the selection of the most predictive models.

As a general recommendation, it is advisable to choose consensus ap-
proaches based on the intended application of the model. For prioritization
purposes, where one might want to predict as many compounds as possible,
we recommend using non-protective approaches. In this case, since MV and
Bayes consensus lead to comparable performance, MV may be the method
of choice because of the easier implementation and interpretation of results.
When the goal is, on the other hand, to obtain the most accurate estimate
possible, at the expense of the chemical space covered, protective methods
should be applied on a selected, best performing subset of models.
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Chapter 5

Multi-task modelling to predict
nuclear receptor modulators

Multitask modelling implies the simultaneous learning of several related re-
sponses or tasks (Caruana, 1997).

Approaches based on deep neural networks are often associated with this
type of modelling, where deep learning refers to machine learning strategies
based on neural networks with multiple layers of nonlinear processing (Le-
Cun, Bengio, and Hinton, 2015).

Several recent QSAR studies have shown that deep learning approaches
often outperform traditional machine learning approaches both in regression
and classification. In particular, deep neural networks have proved to be a
valuable tool in drug design and virtual screening (Unterthiner et al., 2014;
Imrie et al., 2018; Korotcov et al., 2017; Ma et al., 2015; Lenselink et al., 2017;
Gini et al., 2019; Xu et al., 2017).

The interest in simultaneously modelling more than one biological prop-
erties (referred to ‘tasks’) has been increasing in the QSAR field (Ramsundar
et al., 2015; Sosnin et al., 2019; Dahl, Jaitly, and Salakhutdinov, 2014). How-
ever, the issue deriving from predicting multiple responses implies the use
of advanced algorithms (Wold, Sjöström, and Eriksson, 2001).

The standard approach in machine learning is to learn one task at a time
(i.e., single-task modelling), while multi-task learning assumes that training
a unique model simultaneously on multiple related tasks allows to process
together all the available information, which can help to learn also very diffi-
cult tasks (Wenzel, Matter, and Schmidt, 2019). In particular, multi-task deep
neural networks allow to obtain information not only from the multiple hid-
den layers, but also from a shared internal representation deriving from the
multiple related tasks (Sosnin et al., 2019; Caruana, 1997).

Despite the increasing use of deep neural networks in several scientific
fields, their performance improvements over other methods are not from uni-
versal nor substantial (Xu et al., 2017).

On the one hand, some scientists recommend simpler models for specific
applications (e.g., estrogen receptor binding and acute toxicity prediction)
(Russo et al., 2018; Liu et al., 2018), while on the other hand, some stud-
ies have reported a statistically significant gain in performance over classical
approaches (albeit smaller in absolute terms) (Mayr et al., 2018; Rodriguez-
Perez and Bajorath, 2019).
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FIGURE 5.1: Schematic representation of the considered multi-
task feedforward neural network with bypass layer; input vec-
tor is mapped to output layer with repeated compositions of
hidden layers, a bypass layer connects directly the input with

each task-specific sigmoid neuron in the output layer.

In particular, multitask neural networks have been shown in several QSAR
studies to outperform single-task models (Ramsundar et al., 2015; Mayr et
al., 2018; Ciallella et al., 2021). The undoubted advantage of the multitask ap-
proach, which computes a single model for multiple tasks, is that it is cheaper
in terms of computational requirements than traditional single-task QSAR
modeling, which involves computing as many models as tasks. Moreover, in
multitask modeling, underrepresented tasks can benefit from implicit data
augmentation and, thus, achieve higher performance (Caruana, 1997). How-
ever, the main drawback is the requirement of a relationship between (Xu
et al., 2017) tasks.

In this chapter, we evaluated advantages and limitations of multitask neu-
ral networks (both deep and "shallow" neural network-based) in compari-
son to four single-task reference approaches: random forest (RF)(Breiman,
2001), k-nearest neighbors (kNN),(Wilkinson et al., 1983) N-nearest neigh-
bors (N3)(Todeschini et al., 2015) and Naïve Bayes (NB) (Townsend, Glen,
and Mussa, 2012) for predicting bioactivities of NRs.

Comparison was performed on a subset of the NURA dataset on at least
one of 30 binary tasks representing agonism, antagonism, or binding (in the
form ’active’/’inactive’) toward 11 nuclear receptors (Valsecchi et al., 2020b;
Valsecchi et al., 2020c). Molecules were randomly divided into training and
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test sets. We optimized each model separately in cross-validation through
grid search-based protocols, while genetic algorithms were used to tune the
parameters of the multitask neural networks (as suggested by the study re-
ported in Appendix A). All approaches were finally evaluated on the test set
and on an additional evaluation set of 304 novel chemicals, considering both
classification measures on each task and on the entire chemical set.

5.1 Data curation

In this work, we used NURA dataset (Chapter 3) and each type of bioactivity
for a given receptor (i.e., binding, agonism or antagonism) was considered as
a task (e.g., binding activity for androgen receptor), resulting in a total of 33
tasks. Only active and inactive annotations were considered, and tasks con-
taining such annotations for fewer than 200 molecules were discarded (i.e.,
antagonism for PPARα, PXR and RXR). The dataset considered thus consists
of a total of 14,963 chemicals annotated (as active or inactive) for at least one
of the 30 selected tasks (Table 5.1).

Molecules were randomly split into training set (11,970 molecules, 80%)
and test set (2,993 molecules, 20%), preserving the proportion between the
two classes (actives/inactives) for each task (stratified splitting). The number
of molecules for each task and the activity distributions among the tasks are
shown in Table 5.1.

For each molecule, we computed ECFPs (Rogers and Hahn, 2010) as input
variables.

To further assess the predictivity of the model, we collected an additional
set of chemicals, hereafter referred to as the evaluation set. Chemicals were
retrieved from the latest available release of ChEMBL database (26, released
on 3 March 2020), such that (i) they were not included in the training or test
set, (ii) they had an experimental annotation on at least one of the tasks of
interest. The retrieved molecules were curated following the same pipeline
as the training set and test chemicals, and and were labeled for their bioactiv-
ity as in the NURA dataset (Chapter 3 and (Valsecchi et al., 2020b)). Because
97.8% of the chemicals were active, the inactivity data (10 molecules) were
considered as not numerous enough to have a reliable estimate of classifi-
cation accuracy and were therefore excluded. The evaluation set consisted
of 304 molecules with 435 ’active’ labels for one task, as reported in the last
column of the Table 5.1.

5.2 Parameters tuning

The tuning of the neural network parameters was performed by means of ge-
netic algorithm (GA) as suggested by the study reported in Appendix A. The
GA resulted in 1515 different parameter combinations (i.e., number of layers
and number of neurons per layer, learning rate, optimization algorithm, ac-
tivation function, regularization and bypass layers). This set contains all the
solutions found by the GA approach. The obtained chromosome population
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TABLE 5.1: Dataset description: number of molecules and class
distributions among the tasks for the training, test and external

(ext.) sets.

Task information Training set Test set Ext. set
Receptor Task Label # mol. Act. (%) # mol. Act (%) Act.

Androgen
AR bind 5221 21.3 1328 23.0 5
AR ago 4861 8.4 1230 8.5 5
AR ant 4566 13.5 1152 14.0 22

Estrogen (α)
ERα bind 4927 20.9 1221 21.0 32
ERα ago 4420 8.4 1116 9.5 7
ERα ant 4405 6.2 1117 7.8 39

Estrogen (β)
ERβ bind 5370 17.3 1343 17.3 33
ERβ ago 4814 4.7 1216 4.9 24
ERβ ant 4291 4.2 1066 4.2 17

Farnesoid X
FXR bind 4627 9.3 1195 9.9 -
FXR ago 4551 6.4 1170 6.8 40
FXR ant 3939 2.4 1014 2.8 31

Glucocorticoid
GR bind 5644 25.9 1399 25.3 -
GR ago 4879 12.0 1242 12.2 2
GR ant 4173 12.4 1061 13.1 44

PPAR(α) PPARα bind 991 98.8 244 98.8 -
PPARα ago 808 98.5 204 99.0 -

PPAR(γ)
PPARγ bind 5719 23.8 1438 23.4 -
PPARγ ago 5276 20.7 1299 19.9 6
PPARγ ant 4261 1.5 1076 2.0 4

PPAR(δ)
PPARδ bind 5165 11.2 1307 11.6 17
PPARδ ago 5005 9.7 1274 10.3 1
PPARδ ant 4463 0.5 1126 0.6 1

Progesterone
PR bind 5029 20.0 1262 19.3 89
PR ago 4799 6.1 1220 4.8 4
PR ant 4099 14.3 1042 14.9 -

Pregnane X PXR bind 3264 5.9 835 5.0 -
PXR ago 3260 5.7 834 4.9 12

Retinoid X RXR bind 4352 16.2 1078 14.7 -
RXR ago 3738 2.8 941 2.8 -
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was used to evaluate the influence of the parameters on the classification per-
formance of feedforward neural networks. For this purpose, the 1515 chro-
mosomes were classified based on their fitness function (i.e., NERT in 3-fold
cross-validation) and divided into 10 intervals based on the deciles of NERT.
The relative frequency of each parameter in each decile was calculated (Fig-
ure 5.2). A total of 88.5% of the chromosomes included in the highest decile
of NERT (D10) have learning rate of 0.001, while 5.8% have learning rates
of 0.01 and 0.0005, and none have learning rate of 0.025. In addition to the
observed optimal learning rate (0.001), other settings are frequent among the
best chromosomes, such as (1) Adam optimization (frequency greater than
90% in the best five deciles and equal to 100% in D8, D9 and D10) and (2)
no exponential decay (always absent in the models belonging to the best 6
deciles).

To get further insight into the relationship between parameters and clas-
sification performance, we performed a principal component analysis (PCA)
on the relative frequencies depicted in Figure 5.2. We normalized the values
by dividing each relative frequency by the maximum relative frequency of
each parameter. Then, we carried out a PCA on the transposed matrix, us-
ing the 10 deciles as rows and the 28 parameter values as columns. The first
two principal components (Figure 5.3) capture 57% of the data variance, thus
providing a good overview on the relationship between network parameters
and model performance.

Indeed, the first component (PC1) captures the variation of NERT across
deciles and, thus, higher PC1 scores correspond to better average classifica-
tion performance. PC1 confirms the previous considerations from the nu-
merical analysis of the relative frequencies in Figure 5.2: learning rate of
0.001 (LR01), Adam optimization algorithm (OptA) and no exponential de-
cay (ED0) correlate with the highest deciles (D8, D9 and D10), that is, these
settings appear frequently in the best models. In contrast, exponential de-
cay (ED1) and gradient descent optimization (OptGD), with the lowest load-
ings on the first component, are mainly related to the worst deciles (D1 and
D2, where NERT decreases down to 50%). As for what is captured by PCA,
weight decay (WD) and dropout (Drp) seem not to affect NERT, having PC1
loadings between -0.1 and 0.1.
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FIGURE 5.2: Relative frequency (%) of network parameters in
the chromosomes of the final Genetic Algorithm population; for
each NERT-based decile (D1,..., D10), the relative frequency of
architecture and training parameters is reported. The first two
rows report mean and minimum-maximum values of NERT
(%) for each decile. *The relative frequencies of weight de-
cay type (L1, L2) were calculated considering only the chromo-

somes with weight decay equal to 0.01 (WD1)
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FIGURE 5.3: PCA biplot of relative frequencies of network pa-
rameters. Scores (the deciles: D1, D2, . . . , D10) are coloured
according to the average NERT. FFNL1 and FFNL3 stand for
the two multitask feedforward neural networks whose selected
parameter combinations are highlighted in red and green, re-

spectively

The type of activation function appears to have a moderate influence on
classification performance, with ReLU (AFr) being the one most associated
with high values of NERT

In order to select the best performing parameter combination, we then se-
lected the settings associated with the highest PC1 loadings for each param-
eter, i.e., a multitask neural network (FFNL1) consisting of a hidden layer
of 100 neurons (Arch1) with a ReLU (AFr) activation function, a bypass net-
work (Bp1), an Adam optimization algorithm (OptA), a learning rate of 0.
001 (LR01) and no regularization (no weight decay, WD0, no dropout, Drp0,
and no exponential decay, ED0). This solution is associated with a NERT in
cross-validation of 90.6%.

FFNL1 can be considered as a ‘shallow’ neural network, since it has only
one hidden layer. To compare the performance of shallow and deep mul-
titask neural networks, we also considered the best architecture selected by
GA with three layers (Arch2, the deepest). We set the three most relevant pa-
rameters to their optimal values as determined by PCA (LR01, OptA, ED0),
and searched for the best combination of the remaining parameters.

The best result obtained (NERT in cross-validation equal to 90.4%) cor-
responds to three hidden layers (1000, 100, 10), leaky ReLu as the activation
function (AFl), no bypass net (Bp0), Adam optimization algorithm (OptA),
learning rate of 0.001 (LR01), no dropout (Drp0), weight decay type L2 of
0.001 (WD1) and no exponential decay (ED0). This model will hereafter be
referred to as model FFNL3.
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TABLE 5.2: Classification performance (NERT) on the test set
for each task. The last row collects the average NERT of each
modelling method. For each task, the best NERT is highlighted

in bold while the worst NERT is underlined.

task FFNL1 FFNL3 NB N3 kNN RF
AR bind 97.4 96.3 89.6 97.7 97.8 97.9
AR ago 95.3 93.2 89.8 93.0 93.5 94.4
AR ant 92.3 92.0 84.2 92.6 92.5 91.7
ERα bind 95.3 95.9 86.8 95.5 95.0 95.1
ERα ago 87.8 87.7 80.9 87.9 86.1 85.7
ERα ant 88.3 89.8 85.9 87.4 85.0 84.3
ERβ bind 97.6 97.7 87.0 97.8 98.0 97.0
ERβ ago 94.2 93.3 85.6 95.4 89.8 91.3
ERβ ant 89.9 89.5 84.7 89.6 88.1 88.5
FXR bind 96.2 95.4 91.9 97.0 95.2 95.4
FXR ago 97.4 98.1 94.3 99.5 97.1 97.3
FXR ant 87.0 84.4 82.9 85.6 78.3 76.7
GR bind 96.6 95.9 91.0 97.9 98.1 97.9
GR ago 97.0 96.6 93.9 98.1 97.9 98.4
GR ant 92.4 93.2 88.2 93.5 94.0 92.8
PPARα bind 65.8 65.8 64.2 65.8 66.5 66.0
PPARα ago 74.0 49.0 72.8 74.0 74.8 74.3
PPARδ bind 99.3 99.4 96.0 98.7 99.0 99.2
PPARδ ago 99.0 99.5 96.1 99.1 99.0 98.7
PPARδ ant 74.9 75.0 75.0 75.9 78.6 71.4
PPARγ bind 95.2 94.2 90.8 95.6 96.0 95.5
PPARγ ago 95.1 95.3 92.0 96.9 97.1 95.9
PPARγ ant 62.5 68.8 74.6 77.1 56.1 56.5
PR bind 98.4 98.1 90.6 98.9 99.0 98.6
PR ago 98.9 98.0 93.9 98.3 98.7 98.8
PR ant 94.6 94.4 87.8 94.0 93.3 91.5
PXR bind 85.9 82.9 75.9 77.5 61.7 71.4
PXR ago 85.8 83.8 75.6 78.3 60.7 73.3
RXR bind 94.0 94.4 91.1 95.2 95.2 95.5
RXRago 74.6 78.9 76.8 77.9 76.8 74.8
average 90.1 89.2 85.7 90.4 88.0 88.2

5.3 Comparison on individual tasks

Single and multitask optimized models were used to predict the bioactivity
of test set compounds. Only test set compounds within the AD (2970 out
of 2993, corresponding to 99.2% of the total) were predicted. The table 5.2
collects the classification performance of all the models on the test set for
each task (expressed as NERT).

The last row of Table 5.2 collects the average NERT achieved by each
modelling method. All methods were able, on average, to correctly classify
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most of the test chemicals: the average NERT is above 85% for all meth-
ods, with the lowest average NERT being 85.7% (NB), and the highest being
90.4% (N3), 90.1% (FFNL1) and 89.2% (FFNL3). Comparing the NERT ob-
tained on the training set and test set (Table 5.2), the average difference is 9%
and 10% for FFNL1 and FFNL3, respectively. Considering these slight differ-
ences between fitting and prediction performance, the potential presence of
overfitting can be ruled out.

5.4 Multi-task vs single-task modelling

To provide a graphical representation of the model’s performance, we per-
formed a PCA considering the six classification approaches as samples (rows)
and their NERT for the 30 tasks as variables. To facilitate the comparison,
we added two theoretical benchmarks, consisting of the maximum (’B’, best)
and minimum (’W’, worst) NERT values achieved on each task, respectively
(Figure 5.4A). The first component obtained (PC1) is related to the overall
predictive ability of the classification methods, because the artificial points
’B’ and ’W’ have the lowest and highest PC1 scores, respectively.

Deep (FFNL3) and shallow (FFNL1) multitask neural networks, along
with N3, kNN and RF appear clustered and close to the best point (’B’), in-
dicating their tendency to provide good overall classification. Naive Bayes
(NB) shows the worst average performance, as its PC1 score is the highest.
These results resemble the average performance shown in the last row of Ta-
ble 5.2.

The second component (PC2) explains the different behaviour of kNN
and RF compared the other best performing methods (N3, FFNL1, FFNL3),
which mainly depends on the low NERT on the six tasks with the lowest neg-
ative loadings on PC2 (RXR agonism, ER antagonism, PXR agonism, PXR
binding, FXR antagonism and PPARγ antagonism). These tasks have a re-
markably low number of active chemicals (lower than 6%, Figure 5.4B) and
kNN and RF provide a suboptimal performance, as can be seen from their
low sensitivities (Snt equal to 72% for ERα antagonism and lower than 58%
on the other five tasks, Figure 5.4C). In contrast, multitask feedforward mod-
els (FFNL1 and FFNL3) provided the highest NERT in five out of six cases
(RXR agonism, ER antagonism, PXR agonism, PXR binding and FXR antag-
onism). Notably, the sensitivity values achieved by FFNL1 and FFNL3, to-
gether with N3, on the PXR binding (82.5%, 75.0% and 76.2%, respectively)
are significantly higher than those of most of other approaches (kNN and RF
showed sensitivity lower than 58% for binding). These tasks share a substan-
tial number of active chemicals with other tasks (75%, 75%, 23% and 23% for
ERα antagonism, FXR antagonism, PXR binding and agonism, respectively)
(Valsecchi et al., 2020b), potentially suggesting the benefit of multitask mod-
els, where simultaneous learning can help lesser-represented tasks to be bet-
ter modelled by exploiting available data from the other tasks.

Considering individual tasks, no approach is clearly better than the oth-
ers, in fact all methods show similar performance especially for tasks that are
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FIGURE 5.4: Analysis of classification performance on individ-
ual tasks. (A) PCA score plot on the task-specific classification
performance, expressed as NERT, of all the models considered;
B and W represent the best and worst theoretical performance,
respectively; multitask and single-task models are represented
by green and red points, respectively. (B) PCA loading plot;
each circle represents a task and its size is proportional to the
percentage of active chemicals. Radar plots of (C) sensitivity
(Snt) and (D) specificity (Spt) obtained on test molecules for

each task.

easy to model. For example, for binding and agonism on PPARδ, all classifi-
cation approaches provide NERT higher than 95%. The same consideration
also applies to discrimination of active or inactive chemicals; for example,
all approaches correctly classify more than 91% of active chemicals for FXR
binding and more than 94% for FXR agonism. In contrast, tasks associated
with lower values of NERT show greater variation in results depending on
the modeling approach considered. For example, N3 and NB achieved signif-
icantly higher sensitivity values (86.4% and 72.7% respectively, Figure 5.4C)
and higher overall classification performances for PPARγ antagonism (NERT
equal to 77.1% and 74.6%, respectively) than the other methods (NERT equal
or lower than 68.8%). One possible explanation for the poor performance of
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all models in classifying inactive chemicals for PPARα agonism (Spt less than
50% for all methods, Figure 5.4D) may be due to the fact that this is the only
task, along with PPARα binding, with more than 98% active molecules. For
all other tasks, methods tend to classify inactive chemicals better, with speci-
ficity (Figure 5.4D) comparable to or higher than sensitivity (Figure 5.4C), as
expected due to the generally higher number of inactive compounds.

For at least three tasks (PPARδ, PPARγ and FXR antagonism), N3 shows
higher sensitivity at the expense of specificity, which decreases slightly com-
pared to other models. This is apparent, for example, when modelling PPARδ
antagonism, for which only N3 provides an acceptable sensitivity value (71.4%).
The tendency of N3 to favour the less numerous classes has been already ob-
served (Grisoni, Consonni, and Ballabio, 2019), due to the algorithm normal-
ization on the number of neighbors used belonging to a given class for the
calculation of the prediction (Todeschini et al., 2015).

Since all models show similar mean performance (with a difference of
about 5% between the highest and lowest average NERT, see the last row
of Table 5.2), we tested the statistical significance of the observed differences
with a Wilcoxon signed-rank test by considering all possible pairs of models
and considering Snt, Spt and NERT separately. The test returned a decision
(and an associated p-value) for the null hypothesis that the median differ-
ence in rank between models’ performance on all tasks is zero, that is, for
each pair of models and for each classification measure, we tested whether
there were no significant differences (p-value > 0.05). Figure 5.5 shows the
results of the Wilcoxon signed-rank test, expressed as p values. Considering
the models forming a cluster in the PCA score plot (Figure 5.4A), we can con-
clude that no statistically significant differences were found between N3 and
FFNL1, FFNL1 and FFNL3, N3 and FFNL3. Comparing FFNL1 and FFNL3
with kNN, no statistically significant difference was found on the NERT val-
ues, but significant differences were found in the specificity and sensitivity
results, thus indicating a different behavior of these methods in predicting
active or inactive compounds.

Finally, both deep and shallow networks demonstrated to have signifi-
cantly better classification performance than NB in terms of NERT,sensitivity
and specificity.

5.4.1 Comparison on global performance

The multitask and single-task approaches were also compared based on the
overall classification performance on the test set, in terms of SnT, SpT and
NERT (Table 5.3). Unlike the task-specific indices, the global measures give
an idea of the overall classification capability of the model, regardless of the
performance on each individual task. In fact, these metrics represent the per-
centage of active (SnT) and inactive (SpT) chemicals correctly predicted over
the entire dataset. Thus, the overall performance is inherently affected by
the cardinality of the task (i.e., the number of molecules with annotation in
a given task). The higher the number of molecules annotated as active or
inactive for a given task, the greater the influence of the task on the overall
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FIGURE 5.5: P-values of the paired Wilcoxon signed-rank test
performed on each pair of classification approaches and for
each performance measure (Snt, Spt, and NERT). P-values
greater than 0.05, which support the evidence that the null hy-
pothesis is true (i.e., no statistically significant median differ-
ence between model performance on all the tasks) are high-
lighted in bold. Model pairs with P-values consistently greater

than 0.05 are highlighted with a gray background.

calculated metrics. FFNL1 and kNN provided the highest classification abil-
ity with NERT equal to 95.3%; however, FFNL3, RF and N3 achieved very
similar performance (95.2%, 95.2% and 94.2%,).

All approaches were able to discriminate active and inactive molecules
well (high sensitivity and specificity). Inactive chemicals were predicted
better than active ones, as seen by the specificity values, which were gen-
erally higher than the sensitivity values, with the only exception for N3, NB,
FFNL1, and FFNL3. For these methods, a similar ability to classify active
and inactive molecules was observed. kNN and RF achieved the highest
SpT (around 99%), indicating an excellent ability to correctly predict inactive
compounds. In contrast, FFNL1 and FFNL3 achieved the highest sensitivity
(SnT around 95%), indicating a good ability to classify active compounds.

5.4.2 Performance on the evaluation set

Both single-task and multitask approaches were further tested on the eval-
uation set. All models were retrained on the entire set of training and test
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TABLE 5.3: Global classification measures expressed as NERT,
SnT and SpT (as defined in Chapter 2.6 Equations 2.21-2.22)
achieved on the test set and global sensitivity SnT on the ex-

ternal evaluation set.

Model Test set Evaluation set
NERT SpT SnT SnT

FFNL1 95.3 95.3 95.4 93.0
FFNL3 95.2 95.4 95.1 82.6
NB 89.7 90.3 89.1 89.1
N3 94.2 94.2 94.3 81.7
kNN 95.3 98.9 91.7 68.9
RF 95.2 99.2 91.2 74.9

molecules (with previously optimized parameters) and used to predict the
304 active molecules in the external evaluation set. Only four chemicals
out of 304 were found to be outside the applicability domain and were ex-
cluded from the evaluation. Because the evaluation set contains only ac-
tive molecules for 21 tasks, with several tasks represented by only a few
molecules (9 tasks with less than 10 molecules, Table 5.1), only the overall
sensitivity SnT was considered as a measure for performance comparison.

When looking at the predictions on these compounds (Table 5.3), RF and
kNN underperformed the other models, having SnT ranging from 68.9%
(kNN) to 74.9% (RF). FFNL1 has the highest sensitivity (SnT = 93.0%). The
shallow multitask neural networks (FFNL1), together with Naive Bayes (NB),
have comparable SnT values on the test and evaluation sets (Table 5.3), with
a difference lower than 3%. On the contrary, several discrepancies can be no-
ticed especially for similarity-based approaches, whose SnT decreased from
91.7% to 68.9% for kNN and from 94.3% to 81.7% for N3. This could be due to
the AD approach considered, which is based on the structural similarity of a
target molecule to all chemicals in the dataset and does not take into account
only for the chemicals with annotated response for an individual task. This
AD method was chosen to have a unique approach regardless of tasks and
modelling algorithms, in order to improve comparability between single and
multitask models. This issue could mainly affect similarity-based approaches
and could explain the observed discrepancies in the sensitivities on the test
and evaluation set. To visualize the differences between the misclassifica-
tions of each model, we performed a non-classical multidimensional scaling
(MDS)(Krzanowski, 2000) on the chemicals of the evaluation set (Figure 5.6).

The MDS was calculated on the distance matrix that collects the Jaccard-
Tanimoto distances between all possible pairs of 300 molecules, numerically
described as ECFPs fingerprints.

Figure 5.6 shows the obtained two-dimensional MDS, where each chemi-
cal is coloured according to the fraction of correct predictions among all an-
notated tasks. White points indicate molecules of the evaluation set asso-
ciated only with correct predictions, while black points represent chemicals
with all wrong predictions among available tasks.
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gerprints (ECFPs) of the evaluation set (stress = 0.30). Each cir-
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the fraction of correct predictions among all annotated tasks.
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every possible residue.

From Figure 5.6 we see that the incorrect predictions are clustered in
chemical space, thus indicating that each modelling method may fail on spe-
cific chemical families (darker regions). For example, Imidazo [4,5-c] pyri-
dine derivatives, which were primarily collected from the same scientific
study on PPARγ, 68 are grouped in cluster A (Figure 5.6). Most of these
chemicals are wrongly predicted by N3, kNN and FFNL3, while FFNL1 and
NB provide much better results. Similar considerations can be drawn for the
clusters B and D, for which only a few models (e.g., NB and N3) give satis-
factory results.

NB, although it provides good overall performance over the entire chemi-
cal space, it is the only model to provide inaccurate predictions for molecules
belonging to cluster C. These model-specific limitations could be mitigated
by averaging model predictions with the application of consensus strategies.
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However, groups of chemicals correctly predicted by all models are vis-
ible. For example, molecules in cluster E (Figure 5.6), which includes com-
pounds annotated for up to six tasks (Ning et al., 2018), were correctly pre-
dicted by all models. This highlights a certain convergence of the structure-
activity relationships captured by all the models analyzed when ECFPs are
used to describe the molecules.

5.5 Summary of results and concluding remarks

In this chapter, we addressed the comparison of the classification perfor-
mance of deep and shallow multitask neural networks with that of classical
single-task classification approaches from a QSAR perspective.

The comparison was performed on a subset of the NURA dataset, i.e.,
14,963 chemicals, annotated with agonism, antagonism, and binding activ-
ity for 11 nuclear receptors (i.e., 30 tasks), which were divided into training
and test sets. Moreover, an additional evaluation set that included 304 chem-
icals was collected and used to further evaluate the predictive ability of the
models.

All models were optimized and, in particular, we performed tuning of
the multitask neural networks by means of an ad hoc approach based on ge-
netic algorithms and frequency-based selection. This analysis showed that
the type of optimization algorithm, the learning rate and its exponential de-
cay are the network parameters that most affected the overall classification
performance.

All approaches achieved good classification performance on both test and
external molecules. For the data considered, when comparing classical single-
task and advanced multitask networks, the results are comparable in terms
of average predictive performance, despite some task-dependent exceptions.

Deep and shallow feedforward neural networks achieved the highest clas-
sification performance on average, which, however, was often only slightly
better than the other methods and not always significantly better. Based on
the results of this study, no method was found to clearly outperform all oth-
ers. The single-task approaches considered in this work have the advantage
of avoiding the optimization of several parameters, so they are less compu-
tationally demanding than feedforward neural networks. Therefore, we rec-
ommend using traditional single-task QSAR approaches when only a few
molecular properties need to be predicted.

However, when many tasks need to be modeled simultaneously (such as
the 30 tasks modeled in this study), multitask approaches could offer several
advantages, such as (1) leveraging information about related tasks and (2)
modeling less represented tasks.

Ideally, based on these considerations, multitask models could be a so-
lution to identify selective compounds on desired and less represented bi-
ological targets. In addition, having a unique comprehensive model may
facilitate several desirable aspects of machine learning in chemistry, such as
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(1) defining the applicability domain and (b) developing a "joint" model in-
terpretation for the problem under analysis, thus allowing for better mecha-
nistic understanding.
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Chapter 6

Pseudo multi-task modelling of
ligand-receptor pairs

In pharmaceutical drug research and development ligand and receptor-based
in silico methods constitute complementary approaches for hit and lead iden-
tification. Most of the common modelling approaches in cheminformatics
imply a focus on either the ligand features or the protein ones, i.e. ligand-
based or structure-based approaches.

Combining ligand- and protein-based descriptors implies the availability
of both sources of information and the implementation of a merging strategy.
However a combined approach allows to take advantage of a broader infor-
mation and to predict the activity also for new similar proteins for which
only few experimental data are accessible (Tanrikulu et al., 2009).

Nuclear receptors stand as the perfect case study since they are a super-
family of proteins with similar conformation. Although their ligand-binding
domains are highly conserved, nuclear receptors have shown to be promis-
cuous targets, as demonstrated for instance by the endocrine interference ex-
erted by several man-made compounds (Germain et al., 2006).

In this framework, our object under study is ligand-receptor pair which
we classified as active if a binding event takes place, as inactive otherwise.
Hence, in this chapter only binding activity is taken into account.

The advantage is to be able to simultaneously model different receptors,
thus the problem can be seen as a “pseudo-multitask” problem (Caruana,
1997). We dealt with the binding activity of 11 nuclear receptors simulta-
neously but being the receptor information encoded in the binding-pocket
descriptors, the receptor class is implicit.

The data were retrieved from the NURA dataset (Valsecchi et al., 2020b).
We described each ligand-receptor pair by a combination of ligand and re-
ceptor descriptors. For ligands we computed either Weighted Holistic Atom
Localization and Entity Shape (WHALES) descriptors (Grisoni et al., 2018b)
or ECFPs (Rogers and Hahn, 2010). As receptor descriptors, we started from
an adapted version of WHALES descriptors to handle the dimension of the
protein (pWHALES), and we took into account different strategies to uniform
the dimensions as depicted in Figure 2.4.
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FIGURE 6.1: Workflow of the developed approach: (a) calcu-
lation of pWHALES for each structure retrieved for a nuclear
receptor, (b) processing pWHALES (three strategies: mean for
each pWHALES value, unfolded SOM topmap and unchanged)
and merging them with ligand descriptors (either WHALES or
ECFPs) and (c) modelling approaches (Random Forest, Feed-
forward Neural Network and Heterogeneous Graph Convolu-

tional Network).

We applied three modelling algorithms (feedforward neural networks,
graph convolutional networks and random forest) using different combina-
tions of descriptors obtaining ten models. After the definition of the applica-
bility domain, we developed a consensus strategy able to successfully predict
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binding-event also for nuclear receptors not included in the training set.
We evaluate the performance on three sets. Since the main aim of the

work was to determine the generalization capability of the developed ap-
proach in predicting binding activity for “unseen” nuclear receptors, we cre-
ated a customized internal eleven-fold cross-validation by excluding in a step
wise manner the data referred to one receptor (i.e. leave one receptor out ap-
proach or LORO),

Then, we evaluate the performance on the test set, which contains ligand-
receptor pairs for the same 11 nuclear receptors present in the training set.

Finally we evaluated the developed strategy on an external set of ligand-
receptor pairs composed by “unseen” nuclear receptors.

Figure 6.1 illustrates the pipeline for the pseudo multi-task modelling ap-
proach.

6.1 Data

We used again a subset of NURA dataset (Valsecchi et al., 2020b) keeping
only binding annotations for a total of 14836 molecules and 11 NRs, i.e. 57387
ligand-receptor pairs (19.5% actives, i.e. binding events).

The selection of the training set followed the criterion of maximizing vari-
ability especially for nuclear receptors, i.e., inclusion in the training set of lig-
ands with known activity on multiple receptors and binding to at least one
of them was favored. The majority of the ligand-receptor pairs (43725, 76%)
represents ligands annotated only for non-binding events.

TABLE 6.1: Summary of the size of the training, test and exter-
nal set.

Set No. ligand-receptor pairs No. ligands No. receptors
Training 39696 6891 11
Test 17691 7945 11
External 10294 6203 7

In order to evaluate the generalization capability of the workflow to pre-
dict binding activity for unseen nuclear receptors, we collected modulation
data for additional eight nuclear receptors (LXRα, LXRβ, RORγ, RORβ, RARα,
RARγ, CAR, TRβ). We followed the same pipeline explained in Chapter 3
and (Valsecchi et al., 2020b). Each record was assigned a discrete bioactiv-
ity label, according to its experimental readout, as follows: ’active’, for ex-
perimental bioactivities equal to or lower than 10,000 nM and ’inactive’ for
entries with activity values exceeding 100,000 nM.

6203 molecules were collected for a total of 10294 ligand-receptor pairs
(with a 18.9% of binding events), as reported in Table 6.1.
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6.2 Ligand-receptor pair

We tested the following three modelling approaches: Random Forest (RF)
FeedForward Neural Networks (FFNN) and Graph Convolutional Networks
(GCN). RF and FFNN were applied to each combination of ligand-receptor
descriptors as input (i.e. mean pWHALES and WHALES, unfolded topmap
and WHALES, mean pWHALES and ECFPs and unfolded topmap and ECFPs),
while GCN was applied to the unprocessed pWHALES with WHALES or
ECFPs, for a total of 10 models as reported in Table 6.2.

Kohonen Maps are self-organising neural networks applied to the unsu-
pervised problems. In Kohonen maps similar input samples are linked to
the topological close neurons in the network. Basically, the neurons have as
many weights as the number of responses in the target vectors and learn to
identify the location in the ANN that is most similar to the input vectors; the
weights of the net are updated on the basis of the input sample, i.e. the net-
work is modified each time an sample is introduced and all the samples are
introduced for a certain number of times (epochs).

The Kohonen map is usually characterized by being a squared (or hexag-
onal) toroidal space, that consists of a grid of N2 neurons, where N is the
number of neurons for each side of the squared space. Each neuron contains
as many elements (weights) as the number of input variables. The weights
of each neuron are randomly initialised between 0 and 1 and updated on the
basis of the input vectors (i.e. samples), for a certain number of times (called
training epochs). Both the number of neurons and epochs to be used to train
the map must be defined by the user. Kohonen maps can be trained by means
of sequential or batch training algorithms. When the sequential training is
adopted, in each training step samples are presented to the network, one at
a time and weights are updated on the basis of the winner neuron. In each
training step, samples are presented to the network, one at a time.

At the end of the network training, samples are placed in the most similar
neurons of the Kohonen map; in this way data structure can be visualised
and the role of the experimental variables in defining the data structure can
be elucidated by looking at the Kohonen weights (Ballabio, Consonni, and
Todeschini, 2009) or top map.

We trained a 50× 50 Kohonen map (or Self Organizing Map - SOM) on
the matrix constituted by pWHALES for each cristallographic structures of
the selected nuclear receptors (see Table 2.1). Then, we summed up the top
maps for each nuclear receptor, obtaining a nuclear receptor specific top map.
Finally, we used the unfolded (i.e. vectorized) top map as a descriptors for
each receptor.

6.2.1 Optimization

Two types of optimization of the model’s parameters were taken into ac-
count: random search and grid search. The former was performed in or-
der to sift through a wider range of values without costly calculations, while
the latter allowed us to search for optimal values in a more limited space.
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Both the optimizations were performed in 3-fold cross validation by means
of the scikit-learn library (in particular of the ‘RandomSearchCV’ and ’Grid-
SearchCV’ classes) (Pedregosa et al., 2011). For GCN and FFNN only a ran-
dom search of the optimal parameters was performed.

We optimized the overall Non Error Rate (NERT), that is the average
between the binding and the non-binding events correctly predicted with-
out distinguishing different nuclear receptors. We also computed an aver-
age NER by averaging the NERt values computed for each nuclear receptor
separately. Since the overall NER is intrinsically influenced by the nuclear
receptor’s abundance in the dataset, the average NER provides an indica-
tion on the performance giving equal weight to underrepresented receptors
(Valsecchi et al., 2020c).

The three modelling approaches (GCN, FFNN and RF) are affected by
chance (in the weight initialization or in the random selection of features).
Therefore to guarantee the robustness of the performance, each approach was
repeated 10 times. As output of each approach the result of a majority voting
among replicas was computed. In case of ties (i.e. 5 replicas predict active
while the other 5 replicas predict inactive) the ligand-receptor pair will not
be predicted.

6.2.2 Applicability domain

Reliable model’s predictions are limited generally to the samples that have
features similar to the ones used to build that model.

In this case we applied a restrictive approach, in fact to be in AD a new
ligand-receptor pair needs to fulfil three rules, i.e. the distance has to be
below the threshold for all the considered representations: (i) the WHALES
(95th percentile), (ii) ECFPs (95th percentile) and (iii) pWHALES (75th per-
centile). The thresholds were calculated on training samples.

6.3 Pseudo multi-task results

Five receptors (CAR, RARα, RORγ, PXR, ERβ) fall out of the applicability
domain and thus are not considered in the further analysis.

The ligand-receptor pairs out of AD are 37.1%,18.6% and 29.8% for LORO,
test and external set respectively.

Despite the intrinsic randomness, all models show robustness, i.e. the
standard deviation among the NERT (see error bars in Figure 6.3a).

Comparing overall NERT and average NER (Figure 6.3 a and b) it can be
noted that especially for the external set (blue markers), underrepresented re-
ceptors contribute to a lowering of average NER compared to overall NERT.

The ten models provided NERT results ranging from 69.9 to 90.5%, from
82.1 to 96.3% and from 64.1 to 86.6% for LORO, test and external set, respec-
tively. No modelling approach consistently outperformed the others in all
the three sets. NNfm, i.e. feedforward neural network with ECFPs and mean
pWHALES as descriptors for ligand and protein, respectively, provided the
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most consistent results in validation and prediction (NERT equal to 90.5%,
95.51%, 83.1% for LORO, test and external set, respectively. However, the
models providing the best NERT on test set are NNft and RFfm, while RFwt
showed the highest NERT (86.6%) on the external set.

Since the ten models carry different information, to select the best combi-
nation of modelling approaches, all the combinations of the ten approaches
were considered starting from a minimum of 3 approaches to a maximum
of 10 (i.e. all approaches). The output for each combination was computed
using Bayesian protective approach with a threshold ranging between 0.90
and 0.99 (Fernández et al., 2012), for a total of 2190 combinations.
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FIGURE 6.2: Normalized sum of reciprocal ranks for the first
fifty consensus combinations.

The best combination was chosen according to the lowest normalized
sum of reciprocal ranks (SRR) between overall NERT and average NER on
the LORO set as shown in Figure 6.2. The six combinations with the low-
est SRR are all referred to a three-models consensus including NNwm, NNft
and GCNf with different bayesian protective thresholds ranging from 0.93
to 0.98. Hence, the three-models (NNwm, NNft and GCNf) consensus ap-
proach with a protective threshold of 0.93 was chosen and its performance
are shown in Figure 6.3.
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FIGURE 6.3: Performances for single models and consensus ap-
proach in terms of overall NERT (a) and average NER (b). Red

labels highlight models used for consensus.
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The consensus approach improves the overall performance compared to
individual models and the overall NERT is greater than 90%, while the aver-
age NER is greater than 80% for all the three sets.

6.4 Summary of results and concluding remarks

Considering ligand-receptor pairs allowed to exploit all the information avail-
able, i.e., ligand and binding pocket descriptors. In addition, with this ap-
proach it is possible to predict the binding event for nuclear receptors not
considered in the training phase, if they are inside the applicability domain.

The combination of three different modelling approaches in a consensus
manner showed to increase both the average NER and the consistency. In
particular, the results obtained especially on the external test set constituted
of never seen nuclear receptors are satisfying, with an overall average NER
of 90% and 80%, respectively.

These results are especially promising when applied to virtual screening
of large libraries of compounds to find new candidates as selective or promis-
cuous modulators for the desired nuclear receptor, under the limitations of
being within the applicability domain and having crystallographic structures
of the receptors from which to calculate descriptors.
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Chapter 7

Conclusions

Because nuclear receptors are involved in several physiological processes,
they are of great interest in areas as diverse as drug development or toxico-
logical evaluation. In this context, computational approaches such as QSAR-
based methods offer powerful tools for early detection of new drug candi-
dates or potential harmful molecules.

Analysis of existing nuclear receptor databases revealed purpose-related
differences in the type of chemical structures annotated (and chemical scaf-
folds), and in the proportion of biologically active or inactive molecules. In
particular, databases related to computational toxicology show a predomi-
nance of inactive compounds, whereas databases with a medicinal chemistry
focus contain mainly information on bioactive compounds.

The analysis of the performance of CoMPARA models (Chapter 4) con-
tributed to highlight the need of a curated and heterogeneous set of bioac-
tivity data and the advantage of consensus strategies (Valsecchi et al., 2020a).
Therefore, NURA dataset was developed (Chapter 3) as a comprehensive
dataset on nuclear receptor bioactivity (Valsecchi et al., 2020b), which collects
integrated and curated information on binding, agonism and antagonism for
eleven selected nuclear receptors, using well-known chemical databases. In
addition, the data curation and aggregation pipeline allowed to bridge the
gap between toxicology-related and medicinal-chemistry-related databases.

Our results show that NURA dataset is enriched in terms of number of
molecules, structural diversity and covered atomic scaffolds compared to the
single sources.

The increased coverage of the chemical and bioactivity space offered by
the NURA dataset results in a broader applicability domain and greater ro-
bustness of the developed computational models.

Despite being promiscuous targets, the binding domains of nuclear re-
ceptors are highly conserved. Therefore, simultaneous modeling of different
nuclear receptor bioactivities, i.e., multi-task learning, can lead to increased
performance especially for nuclear receptors with few annotated experimen-
tal data.

The NURA dataset served as a basis to develop machine learning meth-
ods to predict simultaneously the activity for a panel of receptors. To ex-
ploit all the information available, we developed multi-task neural networks,
which are able to predict together multiple tasks or receptors in our case.
The performance of multi-task learning is compared to single task learning
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(Valsecchi et al., 2020c) in Chapter 5. Since neural networks require the tun-
ing of several parameters, particular attention was given to model’s opti-
mization, carried out by means of genetic algorithms which proved to be
the best trade-off between performance and computational requirement and
time (see Appendix A).

Compared to single-task models, multi-task neural networks have shown
to offer the advantage of exploiting information about related tasks, facilitat-
ing the definition of the applicability domain and the development of a "joint"
model interpretation for the problem under analysis.

However, the modelling approaches provided satisfying results in pre-
dicting both active and inactive molecules, with an average NER provided by
the best model for each task equal to 90%. Although human nuclear receptor
super family include 48 members, the NURA dataset includes bioctivity data
only for the eight most studied nuclear receptors (eleven including ER and
PPAR isoforms). In order to provide a modelling approach able to predict
the binding event also for nuclear receptors not included in NURA dataset,
for which only few experimental data are accessible (Tanrikulu et al., 2009),
we combined ligand- and protein-based descriptors in a "pseudo" multi-task
approach (Chapter 6) that considers both ligand and binding-pocket descrip-
tors. In this framework, our objects under study are ligand-receptor pairs
which we classified as active if a binding event takes place, as inactive oth-
erwise. The advantage is to be able to simultaneously model different re-
ceptors. We dealt with the binding activity of 11 nuclear receptors simulta-
neously but being the receptor information encoded in the binding-pocket
descriptors, the receptor class is implicit. We developed different models
which we later combined by means of consensus strategies.

In conclusion, the main outcomes of this project include i) the distribution
of a curated and freely available dataset on NRs modulators and ii) insights
into the application of multi-task neural networks to predict correlated re-
sponses in a toxicology and medicinal chemistry context. In particular, the
developed approaches can be applied for virtual screening of large libraries
of compounds to find new possible modulator candidates of NRs, also in a
drug repurposing framework. Candidates can be chosen for their selective
modulation for the NR under study. In addition, screening can help the pri-
oritisation of possible endocrine disrupting chemicals.
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Appendix A

Parameters tuning

Neural networks are increasingly used in chemoinformatics, but they require
the tuning of several parameters whose slight fluctuation can strongly af-
fect the result. However, neural network tuning is time consuming and not
straightforward. Commonly used optimization techniques include: random
search, which is fast, but doesn’t guarantee to reach satisfying result (Bergstra
and Bengio, 2012), grid search which guarantees to reach the best result but
requires a large amount of time and resources (Liashchynskyi and Liashchyn-
skyi, 2019) and genetic algorithm, which can lead to optimal result sparing
time and resources.

We compared different strategies to optimize a multi-task neural networks
for 3 datasets with special attention on time/computational resources spar-
ing (Valsecchi et al., submitted).

We used the following freely available multi-task datasets whose main
characteristics are summarized in Table A.1:

• a subset of the NUclear Receptor Activity dataset (NURA) (Valsecchi et
al., 2020b) composed of a total of 14,963 chemicals annotated (as active
or inactive) for at least one of the selected 30 tasks.

• Tox21 dataset which contains qualitative toxicity measurements on 12
biological targets or tasks, including nuclear receptors and stress re-
sponse pathways. This dataset is curated by MoleculeNet as a bench-
mark for molecular machine learning (Wu et al., 2018).

The 7831 compounds were pruned for disconnected structures obtain-
ing 7586 molecules.

• ClinTox dataset which contains qualitative data of drugs approved by
the FDA and those that have failed clinical trials for toxicity reasons,
i.e. 2 tasks. Also this dataset is curated by MoleculeNet (Wu et al.,
2018). The 1478 compounds were pruned for disconnected structures
obtaining a final dataset of 1472 molecules.

Molecules of each dataset were randomly split into training set (80%) and
external test set (20%), trying to preserve the proportion between the two
classes (actives/inactives) for each task (stratified splitting).

For each molecule, we computed ECFPs as input variables.
The most used multi-task networks in literature are constituted by fully

connected neural network layers trained on multiple tasks, where the output
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TABLE A.1: Summary information of the considered multi-task
datasets.

Dataset No. tasks No. samples Ref.
NURA 30 14’963 (Valsecchi et al., 2020b)
ClinTox 2 1’472 (Wu et al., 2018)
Tox21 12 7’586 (Wu et al., 2018)

TABLE A.2: Table collecting parameters to be optimized and
the levels considered.

Parameters Levels Values
Optimization algorithm 4 SGD Adam Adamax RMSProp
Activation function 4 Sigmoid eLU ReLU Tanh
Penalty type 2 L1 L2
Dropout 2 0 0.5
Learning Rate 4 0.00001 0.0001 0.001 0.01
Batch size 4 5 10 20 50
Epochs 4 5 50 100 500
No. neurons Layer 1 3 10 100 1000
No. neurons Layer 2 4 0 10 100 1000
No. neurons Layer 3 4 0 10 100 1000

is shared among all learning tasks and then fed into individual classifiers. In
this work, we used the binary cross-entropy as loss function; it can handle
multiple outputs also in the case of some missing data. We considered both
‘shallow’ (i.e., only one hidden layer) and deep architectures up to three hid-
den layers, and neurons per layer varying between 0 and 1000. The output
layer consists of as many nodes as tasks. The threshold of assignment for
the output nodes was optimized on the basis of ROC curves for each task,
that is, if the output of the neural network ensemble node is equal or lower
than the threshold the compound is predicted inactive, otherwise active. We
initialized the network weights randomly according to a truncated normal
function with epochs varying from 5 to 500. Table A.2 summarizes the ten
parameters as well as their value levels we chose to tune in this work af-
ter preliminary experiments. Considering the levels for each parameter, the
Cartesian product (4*7*3*2*2) gives a total number of possible combinations
equal to 196’608, which represent the possible points in our features space
which were exhaustively tested by grid search.
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TABLE A.3: Results in terms of overall Non-error Rate consid-
ering Grid Search (GS) Genetic Algorithm (GA) and Random
Search (RS) as optimization strategies in 3-fold cross validation.
The computational time for 3-fold cross validation is also re-
ported in hours (h). Mean and confidence interval among 10

replicas are reported for GA and RS results.

NURA ClinTox Tox21
Best NERT time (h) Best NERT time (h) Best NERT time (h)

GS 95.1 4905.3 93.7 1205.2 76.4 2858.7
GA 94.1 ± 0.2 3.3 91.0 ± 1.1 1.0 74.6 ± 0.5 2.3
RS 93.4 ± 0.4 3.2 88.5 ± 1.4 0.8 73.0 ± 1.0 2.2

GA RS Best GS

91 92 93 94 95 96 97 98 99 100 best GS

FIGURE A.1: Overall Non-Error Rate of the best 10 solutions
for each dataset and optimization method (Genetic Algorithm,
GA, Random Search and Grid Search in red, blue and grey, re-
spectively), considering. Error bars are calculated considering

10 replicas.

Performing grid search (GS) is time consuming, unparalleled it takes 1205
hours for the smaller dataset (ClinTox) and 4905 hours for the biggest one
(NURA) with processors: 2 x 24-cores Intel Xeon 8160 CPU at 2.10 GHz,
Cores: 48 cores/node RAM: 192 GB/node of DDR4. Genetic algorithms
(Figure A.1) have shown to be able to converge after a few generations (42)
starting from an initial population of 10 chromosomes. Comparing the per-
formance obtained by GS and GA optimization (Figure A.1 and Table A.3) it
can be noted that with only 100 total experiments GA is able to converge to
near-optimal solutions with a significant reduction of computational times.
The difference between the mean NERT for GA and the best GS solution is
between one (for NURA) to three (for ClinTox) percentage points.
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Publications and Conferences

Publications:

1. Khan, K., Khan, P. M., Lavado, G., Valsecchi, C., Pasqualini, J., Baderna,
D., Marzo, M., Lombardo, A., Roy, K., Benfenati, E. (2019). QSAR mod-
eling of Daphnia magna and fish toxicities of biocides using 2D descrip-
tors. Chemosphere, 229, 8–17.

2. Valsecchi, C., Grisoni, F., Consonni, V., Ballabio, D. (2019). Structural
alerts for the identification of bioaccumulative compounds. Integrated
Environmental Assessment and Management, 15(1), 19–28.

3. Valsecchi, C., Ballabio, D., Consonni, V.,Todeschini, R. (2020). Deep
ranking analysis by power eigenvectors (Drape): A polypharmacology
case study. Chemometrics and Intelligent Laboratory Systems, 203, 104001.

4. Valsecchi, C., Collarile, M., Grisoni, F., Todeschini, R., Ballabio, D.,
Consonni, V. (2020). Predicting molecular activity on nuclear receptors
by multitask neural networks. Journal of Chemometrics, e3325.

5. Valsecchi, C., Grisoni, F., Consonni, V., Ballabio, D. (2020). Consen-
sus versus individual qsars in classification: Comparison on a large-
scale case study. Journal of Chemical Information and Modeling, 60(3),
1215–1223.

6. Valsecchi, C., Grisoni, F., Motta, S., Bonati, L., Ballabio, D. (2020). NURA:
A curated dataset of nuclear receptor modulators. Toxicology and Ap-
plied Pharmacology, 407, 115244.

7. Valsecchi, C., Todeschini, R. (2020). Similarity/diversity indices on in-
cidence matrices containing missing values. MATCH Communications,
83(2), 239–260.

8. Valsecchi, C., Todeschini, R. (2021). Deep Ranking Analysis by Power
Eigenvectors (Drape): A study on the human, environmental and eco-
nomic wellbeing of 154 countries. In Measuring and Understanding
complex Phenomena (pagg. 267–315). Springer.
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9. Todeschini, R., Valsecchi, C. (2022). Evaluation of classification perfor-
mances of Minimum Spanning Trees by 13 different metrics. MATCH
Communications in Mathematical and in Computer Chemistry, 87, 273-298.

10. Valsecchi, C., Consonni, V., Todeschini, R., Orlandi, M., Gosetti, F.,Ballabio,
D (submitted). Parsimonious optimization of multitask neural network
hyperparameters. submitted to Molecules, Special Issue "Data and Low-
Data Tools for Artificial Intelligence in Medicinal Chemistry.

11. Piazza, G., Valsecchi,C., Sottocornola, G. (submitted). Deep learning
applied to SEM imagery could support the classification of marine coralline
algae. submitted to Diversity, Special Issue "Machine Learning Methods Ap-
plied in Diversity Studies.

Attended conferences and workshop chronologically ordered:

• Chemometrics Workshop (Bergamo, February 25-27, 2019). Oral pre-
sentation entitled:

"Chemoinformatic approach to search for relevant structural alerts using SARpy
software".

• X Colloquium Chemometricum Mediterraneum (Es Castell, June 11-
14, 2019). Poster and flash communication entitled:

"Similarity/diversity indices on incidence matrices containing missing val-
ues".

• QSAR2021 (Online, June 7-9, 2021). Poster presentation entitled:

"Predicting molecular activity on nuclear receptors with deep and machine
learning".

• XXVII Congresso Nazionale della Società Chimica Italiana (Online,
September 14-23, 2021). Oral presentation entitled:

"Enhanced LC-MS/MS spectra matching through multi-task neural networks
and molecular fingerprints".

• III Convegno Annuale Centro 3R (Online, September 30, 2021). Oral
presentation entitled:

"Nuclear receptor modulators: catching information by machine learning".

Attended summer schools:

• Summer School DeepLearn2019 (Warsaw, July 22-26, 2019).

• Summer School DeepLearn2021 (Online, July 26-30, 2021).
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Appendix C

Deliverables

During my PhD I contributed to the realization of the following deliverables:

NURA dataset collects curated information on small molecules that mod-
ulate nuclear receptors to be intended for both pharmacological and tox-
icological applications. NURA contains bioactivity annotations for 15,206
molecules and 11 selected NRs as reported in (Valsecchi et al., 2020b). NURA
is accessible free of charge at the following URL on the Zenodo website (see
Figure C.1).:

zenodo.org/record/3991562#.YUl53rgzaUk

NURA curation pipeline used to prune and standardize records down-
loaded from ChEMBL, NR-DBIND, BindingDB and Tox21 as described in
(Valsecchi et al., 2020b). It was developed in KNIME and is accessible free of
charge at the following URL:

michem.unimib.it/download/data/nura/

Bayes and majority voting consensus (for MATLAB) code and data to
reproduce the consensus (high level data fusion) described in (Valsecchi et
al., 2020a) and in Chapter 4 is freely available at:

michem.unimib.it/download/data/bayes-and-majority-voting-consensus-
for-matlab/

MST toolbox for MATLAB is aimed to visualize Minimum Spanning
Trees for small sized datasets using 13 different distance metrics. The tool-
box provides both node-based and a link-based strategies to semi-supervised
classification as described in [to be added]. In addition, the toolbox allows
the classification of a new object using MST-based measures and its graphical
representation in a MST. It is available at the following URL:

michem.unimib.it/download/matlab-toolboxes/mst-viewer-for-matlab/

https://zenodo.org/record/3991562#.YUl53rgzaUk
https://michem.unimib.it/download/data/nura/
https://michem.unimib.it/download/data/bayes-and-majority-voting-consensus-for-matlab/
https://michem.unimib.it/download/data/bayes-and-majority-voting-consensus-for-matlab/
https://michem.unimib.it/download/matlab-toolboxes/mst-viewer-for-matlab/
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FIGURE C.1: Screenshot of the NURA page on the Zenodo web-
site (accessed on 09/20/2021).
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