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The important thing is not to stop questioning. Curiosity has its 

own reason for existing. One cannot help but be in awe when he 

contemplates the mysteries of eternity, of life, of the marvelous 

structure of reality. It is enough if one tries merely to comprehend 

a little of this mystery every day. Never lose a holy curiosity. 

 
 
 

Anyone who has never made a mistake has never tried 

anything new. 

 
 
 

Albert Einstein, The human side, new glimpses from his archives 
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INTRODUCTION 
 
 
 
 
Over the last century multivariate statistics have become an important 
tool to perform data analysis and, in recent years, its development has 
been mainly oriented towards mathematics and, therefore, towards the 
technical aspects of data analysis. With the advent of computers and the 
‘information age’, statistical problems have grown in both size and 
complexity, and new fields have arisen, like data mining, chemometrics, 
chemoinformatics, bioinformatics. Two main aspects are faced by 
statistics: data exploration, which means learning from data, and data 
modelling.  
Experiments and measurements are performed with the aim of analysing 
the variance of elements, measuring the distance among the elements 
and investigating their order relationships. Several techniques are now 
available for data exploration purposes. Principal Component Analysis 
(PCA) is one of the main methods for performing data analysis: it 
creates new axes to explain, to the greatest degree possible, the 
variance of the data matrix; furthermore it can be used to study element 
relationships, discovering outliers by score plots, i.e. projections of the 
elements in newly defined axes. These graphs allow the analysis of 
element relationships and element distribution in the reduced space of 
the principal components. Another reduced-space ordination method is 
multidimensional scaling: this starts with a scaling of the elements into a 
full-dimensional space, representing them in several dimensions and 
preserving their distance relationships. 
Several Clustering methods are available to study the distance between 
elements or their similarity. Different criteria can be used to establish 
whether elements are close enough i.e. similar enough to be located 
within the same group or cluster, and different definitions of cluster are 
provided by different cluster measures. 
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Another way to perform data exploration is by rank methods which 
analyse the order relationship among elements. The different kinds of 
order methods available can be roughly classified as total (called even-
scoring) and partial-order ranking methods, according to the specific 
order they provide. These methods are the ones needed to support and 
solve decision problems, setting priorities. Besides sophisticated 
multivariate statistics, used mostly in pre-processing and modelling data, 
priority setting makes use of quite simple methodologies. However the 
increasing of problem complexity leads to the decision processes 
becoming more complex, requiring the support of new tools. Thus there 
has been increased interest in decision making strategies and several 
techniques have been proposed. The intrinsic complexity of the systems 
analysed in chemistry research, and the multiplicity of objectives 
involved like economic efficiency, environmental quality and availability 
of resources, has led to complex multicriteria decision problems.  
A decision problem is a situation where an individual has alternative 
courses of action available and has to select one, without any a priori 
knowledge of which is the best. A decision process can be organised 
into three phases: the identification phase, which consists in the 
recognition of the problem and in the diagnosis of the cause-effect 
relationships for the decision situation; the development phase, which 
results in a search routine to find ready-made solutions and the selection 
phase, which consists in a screen routine, when the search generates 
more solutions, in an evaluation routine and in a judgement choice. The 
decision process, which results in the selection of the best solution, is 
efficient if the procedure to reach the solution is optimal. The aims of a 
decision process are (a) to generate effective information on the 
decision problem from available data, (b) to generate effective solutions 
and (c) to provide a good understanding of the structure of a decision 
problem. MultiCriteria Decision Making (MCDM) strategies are used to 
rank various alternatives (scenarios, samples, objects, etc.) on the basis 
of multiple criteria, and are also used to make an optimal choice among 
these alternatives. In fact, the assessment of priorities is the typical 
premise before a final decision is taken. Decision support systems are 
computer-based systems, which assist individuals in the decision 
process and support judgement decision, improving the effectiveness of 
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the decision process. Thus the focus is on the high quality of the 
strategy rather than on the quality of the final solution. 
In recent years ranking strategies have been widely applied for different 
purposes: evaluation of aquatic toxicological tests [Bruggermann et al., 
1997a; Bruggermann et al., 1995a], analysis of waste disposal sites 
[Halfon, 1989], ranking chemicals for environmental hazard [Halfon and 
Reggiani, 1986; Newman, 1995], comparison among ecosystems 
[Bruggerman et al., 1994; Munzer et al., 1994; Pudenz et al., 1997; 
Bruggermann et al., 1999a; Pudenz et al., 2000], chemicals priorization 
[Bruggermann et al., 1993a], evaluation of on-line databases 
[Bruggermann et al., 1997b; Voigt et al., 1999; Voigt et al., 2000], 
ranking of contaminated sites [Bruggermann et al.,1995b; SØrensen et 
al., 1998], evaluation of materials in car production [Pudenz et al., 1999]. 
In the complex systems evaluated by ranking strategies, elements 
(chemical substances, chemical processes, regions,...) are described by 
several attributes, referred to also as the criteria; thus the system must 
be analysed by more than one criterion, and decisions must be made by 
taking several criteria into account contemporaneously. 
The criteria are any set of attributes which must reliably represent the 
system required properties and which must be orientable, i.e. for each 
criterion it is necessary to explicitly ascertain whether the best condition 
is satisfied by a minimum or maximum value of the criterion.  
Let us now consider an R-dimensional system, with an associated (N x 
R) data matrix X. To each of the N elements a set of R attributes, criteria 
relevant to the decision making procedure, is associated. Each criterion 
can then be weighted to take account of the different importance of the 
criteria in the decision rule. The strategies to reach the optimal choice 
require the development of a ranking of the different options. Within a 
set E (s, t , w, z ∈ E) a ranking (order) on E is a relation with the 
following properties: 
 

s ≤  s     reflexivity 
s ≤ t and t ≤ s   ⇒   t = s   antisymmetry 
s ≤ t and t ≤ z   ⇒   s ≤ z   transitivity 

A set E equipped with the relation ≤ is said to be an ordered set. 
Therefore the evaluation and even the ranking consists of two major 
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steps: providing attributes and combining them. An evaluation method 
can generate: 
 

• a complete or total ranking: s > t > w > z also called a linear order 
• the best option: s > (t, w, z) 
• a set of acceptable options: (s, t, w) > z 
• an incomplete ranking of options s > (t, w, z) or (s, t)  > (w, z). 

 
Total and Partial order ranking (POR) strategies, which from a 
mathematical point of view are based on elementary methods of 
Discrete Mathematics, appear an attractive and simple tool to perform 
data analysis. A complete evaluation by the ranking technique requires a 
pre-processing phase to establish an adequate data matrix, and a post-
processing phase to extract information and decisions on the system 
investigated. Obviously both pre-processing and post-processing may 
influence the results significantly. Pre-processing statistical techniques 
like Clustering, Principal Component analysis, Multidimensional Scaling 
and broad order statistics have been analyzed and compared with 
respect to their capability of supporting ranking methods. The analysis 
performed pointed out that broad order statistics seems to be a very 
suitable pre-processing tool, providing a satisfactory solution to those 
drawbacks related to noise and measurement error. 
Total and partial order rankings can be analysed to establish the quality 
of the result obtained. As is usual for regression and classification 
strategies, the quality of a ranking procedure has to be evaluated by a 
deep analysis and by several indices, i.e. scalar functions which 
describe features of an ordered set and allow comparison among 
different rankings. Thus, the post-processing phase mainly consists in 
evaluating the quality of the ranking procedure by calculating ranking 
indices. For this purpose, new indices for ranking analysis are proposed 
here, and compared with those found in the literature and tested on both 
theoretical and real data. A preliminary analysis of the relationships 
among the ranking indices was performed by Principal Component 
Analysis, and a few ranking index classes were identified. This analysis 
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revealed the new indices as being suitable to represent the main ranking 
properties and to encode unique information.  
Moreover order ranking methods seem to be a very useful tool not only 
to perform data exploration but also to develop order ranking models, 
being a possible alternative to conventional statistical methods such as 
multi-linear regression (MLR) or classification. When data material is 
characterised by uncertainties, order models can be used as an 
alternative to statistical methods such as multi-linear regression (MLR), 
since they do not require a specific functional relationship between the 
independent variables and the dependent variables (responses). 
Moreover in several chemical and environmental problems the aim is to 
define order relationships among several chemicals, to indicate the more 
hazardous ones and to set priorities before final decisions are taken. For 
these purposes order ranking models, which allow not the finding of the 
quantitative response but the inter-relationships for each chemical, can 
be a promising approach in supporting decision making processes.  
The development of an order ranking model has been investigated. To 
develop an order ranking model, the element ranking based on element 
responses (experimental ranking) is compared to the ranking based on 
independent variables (model ranking). If the model ranking is in 
agreement with the experimental ranking of the responses under 
investigation then the predictions of the ranking of other elements not yet 
investigated experimentally can be performed by the ranking model. As 
an exhaustive search for the best ranking models within a wide set of 
variables requires extensive computational resources and is time 
consuming due to the extremely high number of possible variable 
combinations, the Genetic Algorithm (GA-VSS) approach is proposed 
here as the variable selection method. Models based on the selected 
subsets of variables are compared with the experimental ranking, and 
evaluated in both total and partial ranking by the different parameters 
that measure the agreement of the two rankings.  
Only the best quality models are retained in the population undergoing 
the evolution procedure. After a few iterations, the evolving population is 
usually composed of different combinations of variables that correlate 
well with the experimental ranking. 
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Total and partial ranking optimisation parameters have been 
investigated, and the new one proposed has been compared with those 
already published in the literature. Prediction calculations by ranking 
models have been analysed deeply and an approach is proposed here, 
together with a few measures for prediction precision. Moreover, the 
model ranking approach has been compared with traditional multilinear 
techniques in order to highlight the main advantages and disadvantages 
of these approaches. 
Applications of the ranking data exploration, as well as ranking models, 
have been investigated and illustrated. The ranking approach has been 
tested on data coming from different fields: they are both real data 
provided by scientific collaborations and data published in literature. The 
case studies here described have been chosen in order to explain and 
verify some of the theoretical aspects introduced in the thesis.  
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CHAPTER 1  
 

Total Ranking Theory 
 
 
 
 
Total order ranking methods are multicriteria decision making techniques 
used for the ranking of various alternatives on the basis of more than 
one criterion. A criterion is a standard by which the elements of the 
system are judged. Criteria are not always in agreement, they can be 
conflicting, motivating the need to find an overall optimum that can 
deviate from the optima of one or more of the single criteria. 
Total order ranking methods are based on an aggregation of the criteria 
yr, where r = 1, ..R: 
 

Γ ∫ f (y1, y2, .....yR) 
 
Thus, if an element is characterised by R criteria, then a comparison of 
different elements needs a scalar function, i.e. an order or ranking index, 
to sort them according to the numerical value of Γ. Several evaluation 
methods which define a ranking parameter generating a total order 
ranking have been proposed in the literature [Keller and Massart, 1991; 
Hendriks et al., 1992; Lewi et al., 1992]; those more frequently used are 
Pareto Optimality, Desirability functions, Utility functions, Dominance 
functions, Concordance Analysis and Absolute Reference method.  
Most of these methods require the definition of the values and situations 
of optimum, i.e. for each criterion it is necessary to ascertain explicitly if 
the best condition is satisfied by a minimum or a maximum criterion 
value, and the trend from the minimum to the maximum must also be 
established. 
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The attribute setting is a crucial point in ranking methods since it 
requires the mathematization of decision criteria which are often not 
completely defined or explicit. 
Total order ranking results are strictly dependent on the criteria setting 
and thus can be completely different for different settings. 
 
 
1.1 Pareto Optimality 
Pareto optimality is a multicriteria decision making method introduced 
into chemometrics by Smilde et al [Smilde et al., 1986]. The Pareto 
optimality technique selects the so-called Pareto-optimal points and the 
points that are not Pareto-optimal points are inferior to the Pareto-
optimal points with respect to at least one criterion. Let us consider a 
two-dimensional criterion space like the one in Figure 1.1. 
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Figure 1.1 – Representation of the four quadrants in a two-dimensional criterion 
space around the point P. 
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A point corresponds to one setting of two criteria, the criterion values of 
which are plotted against each other. The space around the point P can 
be divided in four quadrants. In the case of two criteria both to be 
maximised, the points in the first quadrant are inferior to point P, while 
points in the fourth quadrant are superior to point P. The points in the 
second and third quadrants are incomparable with point P since they are 
superior to P for one criterion and inferior for the other. By definition, a 
Pareto optimal point is superior to all other comparable points, thus in 
the case of Figure 1.2 representing the space of two criteria Y1 and Y2, 
both to be maximised, a point a is superior to another point b if the 
following conditions are verified: 

Y1a > Y1b   and   Y2a > Y2b   or 

Y1a > Y1b   and   Y2a = Y2b   or 

Y1a = Y1b   and   Y2a > Y2b 

In other words, a point is a Pareto optimal point if no other points are 
found in the upper right quadrant. According to Pareto optimality, at least 
one point must be Pareto optimal, and all the non-inferior and 
incomparable points together form a set of Pareto-optimal (PO) points. 
 

Y1

Y 2

c

a

b

Y1

Y 2

c

a

b

 
Figure 1.2 – Bivariate representation of the criteria Y1 and Y2. Points a and c 
are Pareto optimal points. 
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If the system under study is described by more than two criteria, the R-
dimensional criterion space (R > 2) containing the Pareto optimal points 
must be projected onto a two dimensional plane. Through Principal 
Component Analysis (PCA) of the matrix containing the PO points, and 
following projection of the scores, it is possible to investigate the criterion 
space graphically. 
 
 
1.2 Desirability and Utility functions 
1.2.1 Desirability functions 

Desirability functions are a well-known multicriteria decision making 
method. The approach is based on the definition of a desirability function 
for each criterion in order to transform values of the criteria to the same 
scale. Different kinds of functions can be used, the more common ones 
being linear, sigmoid, logarithmic, exponential, step, normal, parabolic, 
Laplace, triangular and box. 
Each criterion is independently transformed into a desirability dir by an 
arbitrary function which transforms the actual value of each element into 
a value between 0 and 1: 
 

d f y d r Rir r ir ir= ≤ ≤ =( ) , ,..., .0 1 12  
 
r being the selected criterion, f the function chosen and yir the actual 
value of the i-th element for the r-th criterion. 
Once the kind of function and its trend for each criterion is defined, the 
global desirability D of each i-th element can be evaluated as follows: 
 

D d d d Di i i iR
R

i= ⋅ ⋅ ⋅ ≤ ≤1 2 0 1...  

 
The overall desirability is calculated combining all the desirabilities 
through a geometrical mean. It must be highlighted that the desirability 
product is very strict: if an element is poor with respect to one criterion, 
its overall desirability will be poor. If any desirability di is equal to 0 the 
overall desirability Di will be zero, whereas the Di will be equal to one 
only if all the desirabilities have the maximum value of one. 
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In addition each criterion can be weighted in order to take into account 
criterion importance in the decision rule. In the case of weighted 
desirability functions the overall desirability of the i-th element is defined 
as follows: 
 

D d d d Di i
w

i
w

iR
w w

i
R rr= ⋅ ⋅ ⋅ ∑ ≤ ≤( ... )1 2

1 2 0 1 
 

wr being the weight of the r-th criterion and wr
r

R

=
∑ =

1

1.  

Once D for each element has been calculated, all the elements can be 
ranked according to their D value and the element with the highest D 
can be selected as the best one, if its D value is acceptable. A 
Desirability scale, shown in Table 1.1, was developed by Harrington 
[Harrington, 1965] : 
 
 
Scale of D   Quality evaluation 

1.00   Improvement beyond this point has no preference 

1.00 – 0.80   Acceptable and excellent 

0.80 – 0.63   Acceptable and good 

0.63 – 0.40   Acceptable but poor 

0.40 – 0.30   Borderline 

0.30 – 0.00   Unacceptable 

0.00   Completely unacceptable 

Table 1.1 – Harrington qualitative definition of the Desirability scale. 
 
 
The critical feature of this approach to multicriteria decision making 
problems is the establishment of the relation between criteria and 
desirabilty values which must be performed by the decision maker. 
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1.2.2 Utility functions 

The approach is very similar to the desirability functions; each criterion is 
independently transformed into a utility ur by a function which transforms 
the actual value of each element into a value between 0 and 1. 
 

u f y uir r ir ir= ≤ ≤( ) 0 1 
 
r being the selected criterion, f the function selected and yir the actual 
value of the i-th element for the r-th criterion. 
Once the kind of function and its trend for each criterion has been 
defined, the overall Utility U of each i-th element is defined as: 
 

U
u

R
Ui

ir
r

R

i= ≤ ≤=
∑

1 0 1 

 
In the case of weighted utility functions the overall utility is calculated as: 
 

U w u Ui r ir
r

R

i= ⋅ ≤ ≤
=

∑
1

0 1  

with wr
r

R

=
∑ =

1

1.  

 
In this case the overall utility is calculated less severely: in fact the 
overall quality of an element can be high even if a single utility function is 
zero. 
Like the desirability functions, the utility functions are affected by 
arbitrariness related to the a priori selection of the functions and 
corresponding upper and lower limits. Both desirability and utility 
functions are very easy to calculate, thus specific software is not 
required. 
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1.3  Dominance functions 
The dominance function method is based on the comparison of the state 
of the different criteria for each pair of elements. This approach does not 
require the transformation of each criterion into a quantitative function, it 
has only to be established whether the best condition is satisfied by a 
minimum or maximum value of the selected criterion.  

For each pair of elements (i, j) three sets of criteria are determined: 
R+(i,j) is the set of criteria w+ where i dominates j, i.e. where i is better 
than j, R0(i,j) is the one where i and j are equal, and R-(i,j) is the set of 
criteria w - where i is dominated by j.  
The dominance function between two elements i and j is calculated 
considering the weights as follows: 
 

C
w

w
Cij

R

R

ij=
+

+
≤ ≤

+

−

+

−

∑
∑

1

1
0 5 2.  

 

with wr
r

R

=
∑ =

1

1.  

A Cij value equal to 1 means equivalence of the two elements; Cij  > 1 
means that the element i is, on the whole, superior to the element j, 
whereas Cij  < 1 means that the element i is, on the whole, inferior to the 
element j. The obtained values can be normalised according to: 
 

C
C

Cij
ij

ij
' '.

.
=

−

−
≤ ≤

0 5
2 0 5

0 1 

 
A global score of the i-th element is then calculated as: 
 

Φ Φi ijj iC N= ≤ ≤ −∑ ' 0 1 
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and the corresponding i-th scaled value is: 
 

Φ
Φ

Φi
i

iN
' '=

−
≤ ≤

1
0 1  

 

Elements with higher values of Φ’ are the optimal points. 

 
 
1.4 Preference functions 
The preference function ranking method was developed by Brans, 
Vincke and Mareschal [Brans and Vincke, 1985; Brans et al., 1986]. This 
approach uses subjective preference functions for each separate 
criterion to rank the different elements. However, differently from the 
desirability and utility functions, the preference function trend does not 
directly model the element values for each criterion, it models the 
difference values between each pair of elements. Thus for each r-th 
criterion, a preference function Pr(i.j) must be defined for the difference 
between the function values of two elements (δij = f(i) – f(j)). The 
preference function Pr(i.j) defines the degree to which the i-th element is 
preferred to the j-th element and is constructed according to the 
following rules: 

 
P i j ifr ij( , ) = <0 0δ  

P i j ifr ij r( , ) = ≥1 δ δ  

P i j f if rr r
ij

r

ij( , ) ( )= < <
δ

δ
δ

δ0 1 

 
where δr is the quantification of the outranking difference value required 
for the r-th criterion between two elements. If the difference between the 
two elements, i and j, is greater than or equal to the δr value, then the i-
th element is strictly preferred to the j-th element; if it is less than 0, no 
preference exists and the two elements do not differ. In the other cases 
the preference value is provided by the function itself, the term being 
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defined as P i j fr r
ij

r
( , ) ( )=

δ
δ . In a second step, a preference index Π(i,j) 

of element i over j for all the criteria, is calculated as: 

( , ) ( , )i j w P i jr
r

R

r∏ ∑= ⋅
=1

 

where R is the total number of criteria, wr the weight for the r-th criterion 

with wr
r

R

=
∑ =

1
1. The Π(i,j) values range from 0 to 1 indicating the global 

preference of i to j. In a third step, the positive flow and negative flow 
outranking for each element is calculated: 

 
Φ i r

i j+ = ∏∑ + ( , )  

Φ i r
i j− = ∏∑ − ( , )  

 
The former measures how the i-th element outranks all the other 
elements and the sum runs over all the criteria favourable to i; the latter 
measures how the i-th element is outranked by all the other elements 
and the sum runs over all the criteria not favourable to i. 

The global quality, called net flow outranking, of the i-th element is then 
calculated as: 

 
Φ Φ Φi i i= −+ −  

 
and the calculated values are normalised according to: 

 

Φ
Φ

i
i N

N N
' ( )

( ) ( )
=

+ −
− + −

1
1 1

 

N being the total number of elements, and (N - 1) and – (N - 1) 
respectively the maximum and minimum values of Φi
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1.5 Concordance Analysis 
The use of Concordance Analysis was introduced by Opperhuizen and 
Hutzinger as a multicriteria decision making method for the priority 
setting of chemicals [Opperhuizen and Hutzinger, 1982]. The main 
difference between Concordance Analysis and Desirability, Utility and 
Dominance functions is the introduction of a reference element to which 
each element is compared. The reference element can be a real 
element or a fictitious one: the centroid, i.e. the vector of the means, is 
frequently used as the fictitious reference element. 

Because of the different dimensions of the criteria, each criterion first 
undergoes normalisation, and each is weighted according to its 
importance in the decision process. For each criterion the normalised 
value is compared with the normalised value of the reference element. 

For each element Concordance and Discordance sets are defined. The 
Concordance set ConSeti, related to the i-th element, is composed by 
those criteria for which the i-th element has values higher than those of 
the reference element i*: 

 

ConSet r y y wi ir i r r= ∀ > ⋅( )*{ }  

The Discordance set DiscSeti, related to the i-th element, is composed 
by those criteria for which the i-th element has values lower than or 
equal to those of the reference element i*: 

 

DiscSet r y y wi ir i r r= ∀ ≤ ⋅( )*{ }  

 

For each element a Concordance Indicator CIi, which measures the 
number of criteria for which the i-th element is preferred to the reference 
element, is calculated as the sum of the weights belonging to the criteria 
of the Concordance set, ConSeti: 
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CI w CIi rr ConSet i
i

= ≤ ≤
∈∑ 0 1 

 

Similarly a Discordance Indicator DIi, which quantifies not only the 
number of criteria with a worse i-th element than the reference element 
but also how much worse it is, is calculated as the weighted maximum 
difference between the criteria of the Discordance set and those of the 
reference element: 

 

DI max (y y ) wi r DiscSet ir i r ri *= − ⋅∈  

 

The maximum is taken over all the criteria of the Discordance set. The 
elements are ranked according to the global score Γi: 

 

Γi i iCI DI= −  

 

Since both CIi and DIi range from 0 to 1, the global scaled score Γi  of 
the i-th element is calculated as: 

 

Γ Γi
i i

i
CI DI

=
− +

≤ ≤
1

2
0 1 

 

It must be pointed out that the Concordance Indicator, as defined in the 
classical Concordance Analysis proposed by Opperhuizen and 
Hutzinger [Opperhuizen and Hutzinger, 1982], is a measure of the 
number of criteria for which each element is preferred to the reference 
element, since the Indicator is defined as the sum of the weights 
belonging to the criteria of the Concordance set, however no account is 
taken of the real quantitative distance between the two elements. 
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A new and quantitative Concordance Indicator CIi
' , which measures not 

only for how many criteria the i-th element is preferred to the reference 
element but also how much it is preferred, is proposed here as the sum 
of the weighted differences between the criteria of the Concordance set 
and those of the reference element: 

 
CI 1 (y y ) wi ir i r rr ConSet

'
*

i
= − − ⋅

∈∑  

 
If the centroid has been taken as the reference element, CIi ranges from 
0 to 0.5, and DIi from 0 to half the maximum weight value (Maxr {wr }), 
thus the global scaled score Γi

'  of the i-th element is calculated as: 

 

Γ Γi
i i

i
'

'
'CI DI 1

2
0 1=

− +
≤ ≤  

 
 
1.6 Absolute reference method 
The absolute reference method is based measuring the distance 
between each element and a reference element, which is supposed to 
represent the overall optimum of all the considered criteria. This method 
requires the definition of the values and situations of optimum, i.e. for 
each criterion it is necessary to explicitly ascertain not only whether the 
best condition is satisfied with a minimum value or a maximum value of 
the criterion, but also the specific optimum values. To get rid of different 
criterion dimensions, each criterion first undergoes normalisation and 
weighting to account for its importance. 

Once a distance measure has been selected, the Absolute reference 
method calculates the entire N distances between the elements and the 
reference element. If the Euclidean distance is selected, the distance of 
the i-th element from the reference element (i*) is defined as: 
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For each element a measure of its similarity with the reference element 
is derived from the Euclidean distance according to the following 
expression: 

S d Si ii i= − ≤ ≤1 0 1*  

 
This similarity measure is used to rank the elements. It ranges from 0 
(no similarity exists between the considered element and the reference 
one) and 1 (there is complete similarity between the considered element 
and the reference one). 

 
1.7 Comparison of total order ranking methods 
A comparison of the total order ranking methods described above is 
performed on a dataset of twelve High Production Volume Chemicals 
(HPVC) found in the IUCLID database [European Communities, 2000]. 
The environmental impact of the pesticides is described by four criteria: 
production volume (PV), as indicator of exposure, acute toxicity to fish 
(LC50), as indicator of toxicity, partitioning coefficient between n-octanol 
and water (LogKow), as indicator of the tendency to bioaccumulate in 
biota, and biodegradation as indicator of the persistence of the 
substance in the environment. The decision matrix analysed by the 
multicriteria decision making methods is shown in Table 1.2. 
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Substance Abbreviation PV* LC50 LogKow BD(%) 

 1-Chloro-4-nitrobenzene  CNB 4 1.5 2.6 0.2 
 4-Nitroaniline  4NA 2 35 1.4 0 
 4-Nitrophenol  4NP 1 7 1.9 0.1 
 Atrazin  ATR 2 4.3 2.5 0.5 
 Chlormequat chlorid  CHL 2 80 -2.2 1 
 Diazinon  DIA 1 2.6 3.3 0 
 Dimethoate  DIM 2 7.5 0.7 0 
 Ethofumesate  ETH 1 11 2.7 0.4 
 Glyphosate  GLY 2 52 0.002 0.3 
 Isoproturon  ISO 2 3 2.5 30 
 Malathion  MAL 3 0.04 2.7 100 
 Thiram  THI 2 0.3 1.7 0 

Table 1.2 – Data on production volume (PV), Acute Toxicity for fish (LC50), n-
octanol – water coefficient (LogKow) and biodegradation for 12 pesticides. * 1 = 
5.000 – 10.000 tons/year; 2 = 10.000 – 50.000 tons/year; 3 = 50.000 – 100.000 
tons/year; 4 = 100.000 – 500.000 tons/year. 

 
The environmental impact of the pesticides was studied: since a hazard 
substance, i.e. one with a high environmental impact, is characterised by 
low acute toxicity for fish (LC50) and low biodegradation a linear inverse 
transformation has been applied to these two criteria, whereas for 
production volume and n-octanol – water coefficient (logKow) a linear 
transformation was applied as high values determine high environmental 
impact. The criteria were weighted equally (wr = 0.25) and the 
preference function values calculated with a delta value δr equal to half 
the standard deviation of the r-th criterion. The rankings obtained by 
Desirability, Utility, Dominance, Preference functions, Concordance 
analysis and Absolute reference are shown in Table 1.3. 
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Sub. Des. Uti. Dom. Pref. ConcA ConcQ Abs R. 

CNB 0.96 0.96 0.67 0.76 1.00 0.93 1.00 
4NA 0.59 0.64 0.34 0.41 0.74 0.39 0.59 
4NP 0.00 0.66 0.28 0.42 0.67 0.51 0.50 
ATR 0.72 0.78 0.36 0.61 0.74 0.65 0.67 
CHL 0.00 0.33 0.09 0.28 0.22 0.22 0.26 
DIA 0.00 0.74 0.54 0.59 0.67 0.65 0.50 
DIM 0.63 0.69 0.36 0.46 0.74 0.49 0.62 
ETH 0.00 0.69 0.26 0.47 0.67 0.56 0.50 
GLY 0.47 0.52 0.20 0.33 0.30 0.30 0.48 
ISO 0.66 0.71 0.33 0.50 0.74 0.53 0.64 
MAL 0.00 0.64 0.54 0.61 0.67 0.47 0.47 
THI 0.70 0.76 0.55 0.57 0.74 0.61 0.66 

Table 1.3 – Rankings obtained by Desirability, Utility, Dominance, Preference 
functions, classical and quantitative Concordance Analysis, (ConcA and 
ConcQ), and Absolute reference method. 

 
According to the defined criterion settings, high values of the global 
ranking index correspond to hazard pesticides. Figure 1.3 shows the 
comparison of the rankings obtained by desirability and utility functions: 
it can be observed that they are quite different, the utility approach being 
more capable in discriminating elements. The most significant 
differences are 4-nitrophenol (4NP), diazinon (DIA) and ethofumesate 
(ETH) whose desirability overall index is equal to 0, meaning that they 
are not hazard pesticides, as they are not hazardous according to all the 
considered criteria, having quite a low value of production volume. 
Chlormequat chlorid (CHL) and malathion (MAL) are not considered 
hazards as they respectively have a low LogKow value and high 
biodegradation. Thus if a substance has a very low value of one criterion 
its rank may vary significantly and if the criteria have different weights 
another rank will occur. 
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Desirability and Utility rankings
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Figure 1.3 – Graphical comparison of the obtained Desirability and Utility 
rankings: the elements are sorted according to the Desirability index. 
 
The rankings obtained by dominance and preference functions have 
been compared in Figure 1.4: it can be observed that they are quite 
similar, both these approaches being based on pair element 
comparison. The preference overall index is always greater than the 
dominance one, thus it estimates a higher hazard pesticide than the 
dominance approach. The most relevant discrepancies are detected for 
atrazin (ATR), isoproturon (ISO) and ethofumesate (ETH) which are 
considered significantly hazardous according to their preference index, 
whereas they are not of priority attention according to their dominance 
index value. In contrast to the dominance function, the overall ranking 
index derived from the preference function further depends on how the 
preference functions have been formulated. If δr is small the preference 
function becomes independent of the metric used, whereas if δr is large, 
the metric value becomes more relevant. 
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Dominance and Preference rankings
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Figure 1.4 – Graphical comparison of the obtained Dominance and Preference 
rankings: the elements are sorted according to the Dominance index. 
 
Both classic concordance analysis and the new quantitative one were 
performed using, as the fictitious reference element, the centroid i.e the 
vector of the means. Figure 1.5 shows the rankings by classical 
concordance analysis and quantitative analysis. The rankings differ and 
it is to be noted that classical concordance analysis is unable to 
differentiate the final ranking results as it only sums the weights of the 
elements above the reference element, and subtracts the weighted 
difference from the criterion, the lowest with respect to the reference 
element. While classical concordance analysis identifies only 5 levels 
(different values of the ranking index) for the twelve pesticides, the 
quantitative concordance approach is able to distinguish all the 
pesticides, showing less degeneracy than the classical approach. 
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Classical and Quantitative Concordance Analysis rankings
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Figure 1.5 – Graphical comparison of the obtained Classical and Quantitative 
Concordance Analysis rankings: the elements are sorted according to the 
Classical Concordance Analysis. 
 
By the absolute reference method, Figure 1.6, it can be seen that if the 
element with the highest environmental impact is selected as the 
reference element (CNB) the absolute reference method calculates the 
distance of all the other elements from the reference element, and all the 
other elements are supposed to have a lower impact than the reference 
one.  
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Absolute and Relative Reference method rankings
 (reference element = CNB)
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Figure 1.6 – Graphical trend of the obtained Absolute Reference ranking: the 
elements are sorted according to the Absolute Reference rank. 
 
When comparing total ordered ranking methods, it is important to 
compare even the additional external information required. All the 
methods are based on a first level of subjectivity, concerning the criteria 
selected as representative of the system under investigation. Another 
level of subjectivity is added when the criteria are weighted, as this 
requires the identification of the more important criteria and the results 
are strictly influenced by the weight setting. Compared with the 
desirability, utility and dominance functions, the preference functions, the 
concordance analysis and the absolute reference approaches contain an 
additional level of subjectivity. The preference functions need 
information on a delta value δr, whereas concordance analysis, absolute 
reference approaches require the identification of a reference element. 
Moreover the absolute reference method is based on the assumption 
that no one element can be better than the reference one. Thus all the 
total order methods are based on a set of assumptions: the desirability 
and utility approaches assume a numerical and often linear relation 
among criteria; dominance and preference functions assume the linear 
comparability of the criteria; the classical concordance analysis assumes 
not only the existence of a reference element, as the absolute reference 
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method, but also that the criterion weights can be linearly additive. The 
assumptions which the total ranking methods are based on should be 
kept in mind when a priority setting method is chosen as a certain 
method may be applicable for a given problem, but not suitable for 
another one. 

 
 
1.8 Rank correlation 
All total order ranking methods are highly influenced by the criterion 
selection. The criteria chosen as representative of the system under 
studyi are often provided by the decision-maker. To verify the real 
necessity of all the selected criteria, as being relevant for the multicriteria 
decision problem, a preliminary analysis of the criterion correlation can 
provide useful information. Two rank correlation coefficients are 
available: the Spearman r and the Kendall τ [Kendall, 1948]. Both 
coefficients quantify the correlation relationship between two criteria. 

According to the Spearman coefficient r, two criteria are perfectly 
correlated if they provide the same ranks for all the elements, and the 
difference between two ranks (di) is taken as a measure of the criterion 
difference for the element considered. For the whole set of elements, the 
rank differences are squared before summing them, in order to prevent 
differences with opposite signs from cancelling each other out. The 
general formula of the Spearman r coefficient is: 

r
6 d

N N
rrk

i
2

i 1

N

3 rk= −
−

− ≤ ≤ +=
∑

1 1 1 

 
where di is the rank difference for the element i in the two criteria r and k 
and N is the total number of elements. This coefficient ranges between 
+1 and –1. Criteria perfectly directly correlated, in terms of rank, assume 
values r = +1; inversely correlated values r = -1 and criteria not 
correlated values r = 0. 
The Kendall coefficient τ is based on the sums of scores for pairs of 
elements in increasing and decreasing order. In rank correlation analysis 
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Kendall defined a score for a pair of rankings of N items as +1 if any two 
are ranked in the same order by the two rankings, as -1 if in opposite 
order, and zero if tied to either or both rankings. The total score S is the 
algebraic sum of the ½ N(N-1) contributions from pairs of items. 
To better explain this concept, a small numerical example is used. The 
ranked data of four elements described by two criteria (r1 and r2) are 
shown in Table 1.4. 
 

Element Ranks on r1 Ranks on r2 

a 3 3 

b 4 1 

c 2 4 

d 1 2 

Table 1.4 – Numerical example. Ranks of four elements on two criteria r1 and r2. 
 
The elements are first rearranged in increasing ranks on one of the two 
criteria (here r1), as shown in Table 1.5: 

 

Element Ranks on r1 Ranks on r2 

d 1 2 

c 2 4 

a 3 3 

b 4 1 

Table 1.5 – Numerical example. The element order is rearranged in increasing 
order on r1. 
 
As the ranks are in increasing order on r1, in order to quantify the 
correlation between the criteria, there must be the determination of how 
many pairs of ranks are in increasing order also on r2. Considering the 
element on the first rank on r1 (d), the first pair of ranks (2 and 4 
belonging to d and c) is in increasing order and thus a score of +1 is 
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assigned to it. The same occurs for the second pair (2 and 3, belonging 
to d and a). The third pair of ranks (2 and 1, belonging to d and b) is in 
decreasing order and thus has a negative score of –1. This operation is 
repeated for all the elements in successive ranks along r1 and the sum of 
scores S is calculated. Kendall’s rank coefficient is the sum of scores for 
pairs in increasing and decreasing order, divided by the total number of 
pairs ( N N⋅ −( )1 ) defined as: 

 

τ τrk rk
S

N N
=

−
− ≤ ≤ +

2
1

1 1
( )

 

 
For the numerical example of Table 1.4 and 1.5: 

 

τ rk =
⋅ + − − − −

⋅
=

⋅ −
= −

2 1 1 1 1 1 1
4 3

2 2
12

0 33( ) ( ) .  
 
Kendall’s rank coefficient ranges from +1 in the case of complete 
agreement to –1 in the case of complete disagreement. If the two criteria 
are uncorrelated, it takes a value of 0. 

Both the Spearman and Kendall rank correlation coefficients measure 
the correlation between two criteria, based on N elements. In contrast, 
Kendall’s coefficient of concordance W [Kendall, 1948] measures the 
relationship among several rank-ordered criteria. It is calculated on a 
data table which contains, in each column, the ranks of N elements of R 
criteria according to the following expression: 

 

W
Q Q

R N N
W
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1
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Qi being the sum of ranks of element i, Q  the average rank. 

This coefficient ranges from 0 if no concordance exists among the 
criteria to 1 in the case of maximum concordance. 
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The calculation of Kendall’s concordance is illustrated here by the 
numerical example of Table 1.6. Six elements are ranked separately 
according to each criterion. The last column, contains for each i-th 
element the sum Qi of its ranks on the R = 3 criteria. 

 

Ranks of elements on Row sums 
Elements 

r1 r2 r3 Qi 

a 1 1 6 8 

b 6 5 3 14 

c 3 6 2 11 

d 2 4 5 11 

e 5 2 4 11 

f 4 3 1 8 

Table 1.6 – Numerical example. Ranks of six elements on three criteria r1, r2, r3. 
 
Kendall’s concordance for the data of Table 1.6 is computed as: 

 

W =
⋅ + + + + +

⋅ −
=

12 6 25 12 25 0 25 0 25 0 25 6 25
9 216 6

0162( . . . . . . )
( )

.  

 
 
1.9 Indices for total ranking analysis 
Total order ranking can be analysed to establish the quality of the result. 
As is usual for regression and classification strategies, ranking 
procedure quality has to be evaluated by an analysis deep enough to 
find the main characteristics of the ranking. This requires indices, i.e. 
scalar functions which describe the features of an ordered set, allowing 
comparison of the different rankings. A few new indices for ranking 
analysis are proposed here. 
 
 



Indices for total ranking analysis  

1.9.1 Information content and degeneracy degree 

One of the first aspects to be analysed after having performed a ranking 
procedure is to measure the amount of information made available, and 
when calculating the information content of a total ordered ranking 
consideration must be given to the number of equivalent elements, i.e. 
elements of the same numerical value as the scalar function Γ which is 
the order or ranking index used to sort the elements. 
The information content of a system having N elements is a measure of 
the degree of diversity of the elements in the set [Klir and Folger, 1988]; 
it is defined as: 
 

I n nC c c
c

C

=
=

∑ log2
1  

 
where C is the number of different equivalence classes and nc is the 
number of elements in the c-th class and  
 

N nc
c

C

=
=

∑
1

 

 
Each c-th equivalence class is built by the definition of some 
relationships among the elements of the system. The logarithm is taken 
at base 2 for measuring the information content in bits. 
The information content is zero if the elements differ one from the other 
i.e. no equivalence relationship exists; in this case there are C = N 
different equivalence classes. On the contrary, the information content is 
maximal if all the elements of the set are recognized as belonging to the 
same class (C = 1). This quantity is called the maximal information 
content maxIC and represents the information content needed to 
characterize all the N elements of the considered set: 
 

max logI N NC = 2  
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The total information content (or negentropy) of a system having N 
elements is defined by the following: 
 

I I I N N N N N HC C c c
c

C

= − = − = ⋅
=

∑max log log2 2
1

 

 
The term H is Shannon's entropy, defined below. 
The total information content represents the residual information 
contained in the system after C relationships are defined among N 
elements. 
The mean information content I , also called Shannon's entropy H 
[Shannon and Weaver, 1949] is defined as: 
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where pc is the probability of randomly selecting an element of the c-th 
class, and I is the total information content. 
The maximum value of the entropy is log2N, obtained when nc = 1 for all 
C classes; it is called Hartley information 
 

I NN = log2  
 
where N can be interpreted as the number of alternatives regardless of 
whether they are realized by one selection from a set or by a sequence 
of selections [Hartley, 1928]. Hartley information represents the 
information content needed to characterize one of the N elements. 
The standardized Shannon's entropy (or standardized information 
content) is the ratio between the actual mean information content and 
the maximum available information content (i.e. the Hartley information): 
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The standardised Shannon's entropy is a measure of the relative 
efficiency of the collected information, i.e. the mean information per unit. 
From the mean information content Brillouin [Brillouin, 1962] defined a 
complementary quantity, called the Brillouin redundancy index R (or 
redundancy index), to measure the information redundancy of the 
system: 
 

R H
N

H= − = −1 1
2log

*  

 
Another measure of entropy is given by the Gini index G defined as: 
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where pc and pc’ are the probabilities of randomly selecting an element of 
the c-th and c’-th different equivalence classes, respectively; its 
corresponding standardised version G* is defined by its ratio with the 
maximum G value. The Gini index increases as the diversity of the 
system increases. A complementary quantity to the Gini index is the 
informational energy content [Onicescu, 1966]: defined as: 
 

I
N

IE cc E= ≤ ≤∑ p2 1 1 

 
It corresponds to a redundancy measure whose maximum and minimum 
values are 1 and 1/N, respectively. 
Another degeneracy index k(N) was proposed by Brüggemann 
[Bruggermann and Halfon, 1999b] to measure the degeneracy of an 
order ranking. First proposed for partial ordered rankings, but easily 
applicable to total ordered rankings, it is defined as: 
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nc being the number of elements of the c-th equivalence class and C the 
total number of equivalence classes. 
The corresponding standardized index is: 
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Note that in the case of two equivalence classes, one containing five 
elements and the other only one element, the kstd index takes a value 
equal to 0.67, whereas in the case of two equivalence classes, each 
containing three elements, the kstd index takes a value equal to 0.40. 
Thus the more the degeneracy is shared among the equivalence 
classes, the less is the numerical value of kstd ; thus this index depends 
not only on the degeneracy degree but also on the degeneracy 
distribution in the equivalent classes. 
To avoid degeneracy distribution dependency an absolute degeneracy 
degree (D) of a ranking is proposed here and defined as: 
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The numerator represents the difference between the amount of 
degeneracy of each equivalence class and the case of total absence of 
degeneracy (uniform distribution); the denominator corresponds to the 
maximum value reached by the numerator and is used to scale the 
values between 0 and 1. Degeneracy D allows the evaluation of the non-
uniformity or diversity of the element distribution; D takes a value of 1 
when all the elements have the same value as the ranking parameter Γ, 
in which case the degeneracy is maximum and the total ranking method 
used is not able to differentiate the elements, i.e. the elements are 
correlated and only one equivalence class exists. On the other hand D 
takes the value of 0 for minimum degeneracy when all the elements 
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differ from each other, and N equivalence classes exist, each with only 
one element. The greater the degeneracy, the less the diversity of the 
elements. To highlight the different behaviour of the indices measuring 
the information content or the complementary degeneracy of totally 
ordered sequences, a theoretical example is illustrated in Table 1.7. It 
contains five total rankings obtained for six elements. 
 

Element Γ1 Γ2 Γ3 Γ4 Γ5 

a 0.96 0.74 0.81 0.98 0.83 

b 0.96 0.38 0.81 0.82 0.77 

c 0.96 0.38 0.81 0.82 0.52 

d 0.96 0.38 0.54 0.66 0.41 

e 0.96 0.38 0.54 0.66 0.38 

f 0.96 0.38 0.54 0.30 0.10 

Table 1.7 – Numerical example. Rankings of six elements. 
 
For each ranking the standardised Shannon and Gini entropies (H*, G*), 
the Brillouin redundancy index (R), informational energy content (IE), the 
standardised Brüggemann degeneracy (kstd) and the absolute 
degeneracy index (D) have been calculated. Their values are shown in 
Table 1.8 and can be compared in Figure 1.7. 
 

Ranking H* G* R. IE kstd D 

Γ1 0.00 0.00 1.00 1.00 1.00 1.00 

Γ2 0.25 0.33 0.75 0.72 0.67 0.80 

Γ3 0.39 0.60 0.61 0.50 0.40 0.80 

Γ4 0.74 0.86 0.26 0.28 0.13 0.40 

Γ5 1.00 1.00 0.00 0.17 0.00 0.00 

Table 1.8 – Numerical example of information content and degeneracy indices. 
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0.00

0.20

0.40

0.60

0.80

1.00

1.20

Γ1 Γ2 Γ3 Γ4 Γ5

H* G* R IE kstd D

Figure 1.7 – Information content and degeneracy indices trend. 
 
The first ranking (Γ1) corresponds to the case of a system characterised 
by complete degeneracy: The two entropy indices, the standardised 
Shannon and Gini entropies, take values 0 and the degeneracy is 
maximum according to all four degeneracy indices. The fifth ranking (Γ5) 
corresponds to the case of a system characterised by the absence of 
degeneracy: The two entropy indices take the maximum value of 1 
whereas the degeneracy calculated by the four indices is equal to the 
minimum value (0 for R, kstd and D; 1/N for IE). The second and third 
rankings (Γ2 and Γ3) correspond to two rankings with differently 
distributed degeneracy. The Shannon and Gini entropies take a greater 
value for ranking Γ3 than for Γ2. The degeneracy calculated according to 
the Brillouin index, the informational energy content and the 
standardised Brüggemann expression are all influenced by the way the 
degeneracy is distributed in the system, being greater in ranking Γ2 and 
lower in Γ3. In contrast, the absolute degeneracy index takes the same 
value for rankings Γ2 and Γ3, revealing the presence of two information 
sources in both the rankings. As far as concerns the index values for 
ranking Γ4 it can be observed that the absolute degeneracy index 
calculates greater degeneracy than the others, the Brillouin index and 
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informational energy content values being very similar to each other. It is 
to be pointed out that Bruggermann degeneracy is always the lowest, 
underestimating the degeneracy. 
 
 
1.9.2 Discrimination power by ranking 

In most of the cases, total ordered ranking methods are used in 
multicriteria decision-making problems with the aim of defining priorities. 
For this purpose, of particular relevance is the method capability of 
differentiating the elements with different values of the ranking 
parameter. The quality of an order set can be quantified by the index 
proposed here, called Discrimination power by Ranking (DbyR), which 
measures the capability of discriminating elements by a ranking 
according to the following expression: 
 

DbyR D
L

DbyR= − ≤ ≤1 0 1 

 
D being the absolute degeneracy degree and L the number of Levels, 
i.e. the number of different values of the ranking parameter Γ. 
This index ranges from value 0 for the case of all elements equal to each 
other, i.e. only one equivalent class (D = 1; L = 1), to 1 for the case of 
totally ordered sequence with no degeneracy (D = 0); and increases with 
the decreasing of the degeneracy index.  
The Discrimination power by ranking values calculated for the theoretical 
example of Table 1.5 are 0 for Γ1 (D = 1; L = 1), as the elements are not 
differentiated one from the other; 0.6 for Γ2 and Γ3 (D = 0.8; L = 2), 0.9 
for  Γ4 (D = 0.4; L = 4), and 1 for  Γ5 (D = 0; L = 6), as the elements are 
totally separated in different ranks. 
 
 
1.9.3 Stability index 

A total ranking, performed by any whatever total ranking method, is 
strictly determined by the set of criteria used to describe the system, 
thus by changing the criteria different rankings arise. The set of criteria 
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used may vary, and an additional criterion may be used. Thus it is of 
interest to forecast the effect on the ranking of increasing the number of 
considered criteria, i.e. to evaluate ranking stability.  
The stability ranking index for a total ordered sequence, proposed here, 
is defined as: 
 

StR D
L

StR N=
−

≤ ≤
1 0 1/  

 
where D is the degeneracy index and L the number of levels. 
This index allows the distinguishing of the case of totally ordered 
sequence with no degeneracy from the case of full degeneracy, in fact it 
ranges from 0 for full degeneracy to 1/N, which is assumed as the 
stability of an ordered sequence of N elements. 
The Stability index value for the ranking for Γ1 of the theoretical example 
of Table 1.5 takes value 0: in the case of complete degeneracy it is 
strongly probable that the addition of one criterion will vary the ranking. 
Stability increases from Γ2 to Γ5 with decreasing degeneracy, with the 
following values: 0.05 for Γ2 and Γ3; 0.09 for  Γ4, and 0.17, (maximum 
value for a system of 6 elements) for  Γ5 . 
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CHAPTER 2 
 

Partial Ranking Theory 
 
 
 
 
Ordering is one of the possible ways to analyse data and to get an 
overview over the elements of a system. The elements are commonly 
characterised by more than one quantity, i.e. they are described by 
several variables. As a consequence of the multivariate property of the 
elements, their ordering requires specific techniques as “conflict” among 
the criteria is bound to exist. Total order ranking methods, being scalar 
methods, combine the different criteria values into an index, the ranking 
index Γ, and element comparison and ordering is performed according 
to the numerical value of Γ. In this way the elements are always ranked 
in a total or linear ordered sequence, but the information on conflict 
among criteria is inevitably lost. Partial order ranking is a vectorial 
approach that recognizes that not all elements can be directly compared 
with all other elements because, when many criteria are used, 
contradictions in the ranking can be present. An example could help to 
better understand what criteria conflict is. The system is made up of five, 
not perfectly correlated, elements (a, b, c, d, e), each described by two 
criteria r1 and r2, and the aim is to discover which element is better than 
the other with respect to all the criteria. The elements are sorted, 
arranging them according to r1 and r2 in the permutation diagram 
[Urrutia, 1987] or by parallel coordinates [Welzl et al., 1998] with a 
vertical orientation, as shown in Figure 2.1. 
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Figure 2.1 – Elements arranged in two sequences according to two different 
criteria. 
 
This representation highlights the inversions between the two criteria. 
Elements mutually exchange their position according to the criterion 
used to sort them. Obviously the higher the number of criteria, the higher 
the probability that contradictions in the ranking exist. The partial ranking 
approach not only ranks elements but also identifies contradictions in the 
criteria used for ranking: some "residual order" remains when many 
criteria are considered and this motivates the term "partial order". Thus 
the more known concept of order is the one demanding that all elements 
be comparable i.e. linear or total order, while partial order is the one in 
which elements can be “not comparable”. If many elements are to be 
investigated, and especially if many criteria are to be considered, the 
parallel coordinates become complex and confusing. The Hasse 
diagram technique is a useful tool to perform partial order rankings with 
an easy visualisation of the obtained results. 
 
 
2.1 Hasse Diagram Technique (HDT) 
The Hasse diagram technique is a partial order ranking technique 
introduced in environmental sciences by Halfon [Halfon and Reggiani, 
1986] and refined by Brüggemann [Brüggemann and Bartel, 1999c]. It is 
based on a specific order relation, named product order, and it provides 
a diagram, which visualises the results of the sorting.  
In this approach the basis for ranking is the information collected in the 
full set of criteria, called even attributes, E, which is called the 
"information basis" of the comparative evaluation of elements. 
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The processed data matrix Q (N x R) contains N elements (rows) and R 
attributes (columns). The entry yir of Q is the numerical value of the r-th 
attribute of the i-th element. According to the product order relation, 
which the Hasse diagram technique is based on, IB being the 
information basis of evaluation and E the set of N elements, the two 
elements s and t are comparable if for all yr ∈ IB either yr(s) ≤ yr(t) or 
yr(t) ≥ yr(s). If yr(s) ≤ yr(t) for all yr ∈ IB then s ≤ t. 
The request "for all" is very important and is called the generality 
principle: 

s, t ∈ E; s ≤ t  ⇔  y(s) ≤ y(t) 

y(s) ≤ y(t)   ⇔  yr(s) ≤ yr(t) for all yr ∈ IB 
 

If there are some yr, for which yr(s) < yr(t) and some others for which 
yr(s) > yr(t) then s and t are not comparable, and the common notation is 
s t . If only one attribute is used or all the attributes are perfectly 

correlated then total order is obtained, and all the elements are 
comparable. 
Partial order is determined by the actual information base, thus by 
changing the information base (IB) different partial orders arise. Partial 
order sets can be developed easily with the Hasse diagram technique, 
comparing each pair of elements and storing this information in the 
Hasse matrix which is a (N x N) antisymmetric matrix. For each pair of 
elements s and t the entry hst of this matrix is: 
 
 








∈<−
∈≥+

otherwise0
allfor(t)(s)if1
allfor(t)(s)if1

IByyy
IByyy

h rrr

rrr

st  

 
Thus according to the so-called cover-relation, if there is no element “a” 
of E, for which s ≤ a ≤ t, a π s, t and s π t, then s is covered by t, and t 
covers s. 
 
 
 



Partial ranking theory 

48 

The results of the partial order ranking is visualised in a diagram which is 
constructed as follows: 

1. each element is represented by a small circle 
2. within each circle the element name, or the equivalence class, is 

given. Equivalent elements are different elements that have the 
same numerical values with respect to a given set of attributes. 
The equality according to a set of attributes defines an 
equivalence relation 

3. if an order or cover relation exists then a line between the 
corresponding pairs of elements is drawn, the elements 
belonging to an order relation are "comparable" 

4. if s ≤ t then s is drawn below t, therefore the diagram has 
orientation, consequently a sequence of lines can only be read in 
one direction either upwards or downwards 

5. if s ≤ t and t ≤ z then s ≤ z according to the transitivity rule; 
however a line between s and z is not drawn because this 
connection can be deduced from the lines between s and t and t 
and z 

6. if either s ≤ t or t ≤ s then s and t are not connected by a line; 
thus they are called "incomparable" 

7. ‘incomparable’ elements are located at the same geometrical 
height and as high as possible in the diagram, resulting in a 
structure of levels. Elements belonging to a given level are 
incomparable’. Note, however, that a location of elements at 
different levels does not imply comparability. 

 
In the Hasse diagram, the elements at the top of the diagram are called 
maximals and there are no elements above them; instead elements 
which have no elements below are called minimals and they do not 
cover any further element. If there is only one minimal element, then this 
is called the least element and if there is only one maximal element, it is 
called the greatest element. In the environmental field, where the Hasse 
technique was first applied, the criteria describe the elements in terms of 
environmental hazard. The main assumption is that the lower the 
numerical value the lower the hazard. If a high numerical value of an 
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attribute corresponds to low hazard the attribute values must be 
multiplied by -1 to invert their order. 
Therefore, by this convention, the maximal elements are the most 
hazardous, and are selected to form the set of priority elements. 
Elements that are not comparable with any other element are called 
isolated elements, and can be seen as maximals and minimals at once: 
according to the caution principle they are located at the top of diagram 
within those elements that require priority attention. 
A chain is a set of comparable elements, therefore levels can be defined 
as the longest chain within the diagram. An antichain is a set of mutually 
incomparable elements. The height (longest chain) and width (longest 
antichain) of an order set are indicators of the relative number of 
comparable pairs of elements compared to the total number of pairs. An 
example is provided to understand the Hasse diagram interpretation. Let 
E be the set of 10 elements, and IB the information basis of four 
attributes describing the elements then the data matrix processed is the 
one of Table 2.1. 
 

Element r1 r2 r3 r4 

a 15 4 6 8 

b 12 22 57 31 

c 3 5 6 8 

d 44 33 54 33 

e 22 38 66 35 

f 11 2 69 27 

g 6 29 44 28 

h 14 31 32 22 

i 13 18 20 21 

m 18 19 23 28 

Table 2.1 – Data matrix used for the construction of the Hasse diagram. 
 
The corresponding Hasse matrix is shown in Table 2.2. 
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 a b c d e f g h i m 

a - 0 0 -1 -1 0 0 0 0 -1 

b 0 - 1 0 -1 0 0 0 0 0 

c 0 -1 - -1 -1 0 -1 -1 -1 -1 

d 1 0 1 - 0 0 1 1 1 1 

e 1 1 1 0 - 0 1 1 1 1 

f 0 0 0 0 0 - 0 0 0 0 

g 0 0 1 -1 -1 0 - 0 0 0 

h 0 0 1 -1 -1 0 0 - 1 0 

i 0 0 1 -1 -1 0 0 -1 - -1 

m 1 0 1 -1 -1 0 0 0 1 - 

Table 2.2 – Hasse matrix used for the construction of the Hasse diagram. 
 
 
The corresponding Hasse diagram is shown in Figure 2.2. 
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Figure 2.2. – Typical Hasse diagram. 
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In the Hasse diagram in Figure 2.2 there are no equivalence classes; the 
elements are arranged in four levels, elements d and e are maximals, 
and are not covered by any other element. The element f is an isolated 
element since it is not comparable with any of the other elements; c is a 
minimal and, especially, a least element. Several chains arise: for 
example d ≥ g ≥ c and e ≥ h ≥ i. ≥ c. Obviously maximals are mutually 
incomparable. At level 3,  b and g are not comparable. Incomparability is 
due to contradictory attributes: for each incomparable pair of elements 
there must be at least one pair of attributes of counteracting values. 
Such attributes are called antagonistic. The key diagram interpretation is 
provided by the meaning of chain and antichain. A chain indicates that 
the values of the attributes increase synchronously, whereas antichains 
correspond to diverse patterns. Thus if attributes describe the hazard 
caused by chemicals which are toxic to different species, then maximals 
are those elements of highest priority, the most toxic ones, whilst 
incomparability expresses a diverse pattern of toxicity e.g. toxicity to 
different species. In this case maximal elements are, in the same way, of 
priority attention, being toxic but in a different way.  
In recent years the Hasse diagram technique (HDT) has been widely 
applied in several fields; a new, recently presented, application of HDT 
in chemistry is that of reaction diagrams of progressive substitution on a 
fixed molecular skeleton, forming Hasse diagrams for a partially ordered 
set of substituted structures [Klein and Bytautas, 2000]. An example is 
the case of the progressive chlorination of the hexagonal benzene 
skeleton illustrated in Figure 2.3. The carbon hexagon is shown and the 
Cl-substituted carbon vertices are shown as larger dots; an arrow points 
the way from structure A to structure B if B can be obtained from A by 
replacing a H-atom by a Cl-atom. Thus the arrow represents a single 
minimal step of chlorination; the ordering relation means that there is a 
number of Cl-atoms which can be added to structure A so as to obtain 
structure B. 
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Figure 2.3 – Posetic reaction diagram for successive chlorination of the 
benzene skeleton; black dots identify Cl-substituted sites. 
 
The general class of posetic reaction diagrams are those for which there 
is a progressive degree of reaction (substitution, addition, 
dissociation,…). There are many possible examples of progressive 
reaction graphs and many possible uses to be investigated. 
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In accordance with the literature [Brüggemann et al., 1993b] the Hasse 
diagram technique has some relevant advantages:  

− evaluation can be represented as a graph 

− the mathematics is very simple 

− it can easily manage criteria of different scales (linguistic, ordinal and 
ratio-scaled criteria) since it does not perform any numerical 
aggregation of the criteria. 

Nevertheless there are some severe drawbacks: 

− It is strictly dependent on the clarity of the graphical diagram: 
diagrams that are too complex or too poorly structured, with more 
isolated elements than comparable elements because of conflict, are 
of little use. 

− if there are too many contradictions criterion reduction must be 
performed by preliminary multivariate statistic techniques, like 
Principal Component Analysis (PCA) Multidimensional Scaling. 

− if many elements are to be evaluated, preliminary multivariate statistic 
techniques, like Cluster analysis, are needed to get a readable 
diagram 

− the generality principle is very restrictive and requires appropriate 
data handling. In fact it must be ensured that any two elements 
ordered by ">" can be considered as physically and numerically 
significantly different, i.e. they should have numerically significant 
data differences. Differences within statistical noise, numerical 
uncertainty and experimental error are considered physically 
meaningless, but the Hasse diagram technique considers such 
elements as different. 

 
Data, and especially environmental data, are often associated with a 
significant degree of uncertainty inherent in ranking analysis. The 
comparison of two elements (comparable/incomparable) and thus of the 
ranking can obviously be affected by this uncertainty. There are two 
main sources of ranking uncertainty: the relationship assumed between 



Partial ranking theory 

54 

the attributes and the phenomenon described by the ranking, and the 
input uncertainty. The first type of uncertainty can be minimized by 
increasing the number of attributes so that a large number of different 
aspects are taken into account; nevertheless the greater the number of 
attributes, the higher the probability that contradictions will occur in 
ranking the attributes (incomparabilities), and thus the greater the 
uncertainty in ranking the elements.  
Uncertainty from input is the uncertainty induced from variability in the 
input parameters, which may be due to true variability or to errors in the 
procedure used to determine the values. 
 
 
2.2 Pre-processing tools 
Several studies on the Hasse diagram technique have highlighted that 
often it cannot be used alone. Hasse limits can be solved by combining 
the technique with statistical techniques like Clustering, Principal 
Component analysis or Multidimensional Scaling. Thus a complete 
evaluation with HDT requires a pre-processing phase to establish an 
adequate data matrix, and a post-processing phase to correctly extract 
information and decisions. Obviously both pre-processing and post-
processing may significantly influence the results provided by HDT. 

 
 
2.2.1 Cluster analysis 

As pointed out above the Hasse diagram technique, which shows its 
results graphically, is not easy to read if there are many objects to be 
evaluated, and in such cases object reduction is required. Thus, for 
HDT, Cluster Analysis is a very important pre-processing tool. A partition 
of the object is first performed according to a given clustering method, 
then representatives of each cluster are defined and used to construct 
the order diagram. In this way the clusters are considered equivalence 
classes, the cluster elements being similar enough to be assumed 
equivalent. The main advantage is that the elements are easily replaced 
by a reduced number of pseudo elements, cluster centres or 
centrotypes. However difficulties may arise. Clustering methods are 
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based on the concept of ‘element similarity’ and calculate element 
distances. Instead HDT does not combine numerically different 
attributes, this is done by defining distance expressions. Moreover the 
clustering procedure may change ordinal relations and generate new 
ones, thus the results obtained will depend on the clustering performed. 
As is well known, clustering is affected by a certain arbitrariness related 
to the chosen clustering method, the initial element partition, the metrics 
used to measure element distances, and the selection of cluster 
numbers. As the clustering is not aimed at assigning each element to a 
belonging class (previously unknown), but at reducing data, the main 
interest is to consider a big enough number of clusters to sample the 
data space as deeply and exhaustively as possible. 
The clustering methods most frequently combined with HDT are single 
and complete linkage clustering. These are based on a sequential, 
agglomerative and hierarchical algorithm that starts from a distance or a 
similarity matrix, and proceeds in two steps: The matrix is rewritten so as 
to decrease the similarities or increase distances, identifying the two 
most similar elements followed by the second most similar pair. The 
clusters are then made hierarchically, starting with the two most similar 
elements that are combined to form a new group, and aggregating the 
new groups one to the other. In single linkage, an element is assigned to 
a cluster if it has similarity equal to the considered partition level of at 
least one element belonging to that cluster. In complete linkage the 
element must display the similarity level of all the elements already 
assigned to that cluster. The result of a clustering procedure is usually 
represented by dendrograms which clearly show the clusters generated 
at each partition level. The ordinate is graduated in similarities or 
distances, while the abscissa encodes the information on the elements 
or their identification codes.  

Example of cluster analysis combined with Hasse diagram technique. 

A partial order ranking by Hasse diagram technique was performed on 
the toxicity data of 83 chemicals tested experimentally for their toxicity at 
01, 10, 20, 50,80 and 90 concentrations on Scenedesmus vacuolatus by 
the BEAM EU project. Table 2.3 collects the data. 
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SUBSTANCE ID EC01 EC10 EC20 EC50 EC80 EC90 
2,4,5-Trichlorophenol 1 0.25 0.09 0.03 -0.05 -0.10 -0.13 
2,4-D 2 -1.22 -2.03 -2.29 -2.67 -2.96 -3.09 
4-Nitrophenol 3 -0.66 -1.14 -1.30 -1.53 -1.71 -1.78 
Aldicarb 4 -0.70 -1.92 -2.31 -2.90 -3.34 -3.52 
Ametryn 5 3.01 2.34 2.13 1.81 1.57 1.47 
Anilazine 6 0.14 -0.34 -0.50 -0.73 -0.90 -0.98 
Atraton 7 1.83 1.06 0.81 0.44 0.17 0.05 
Atrazine 8 2.07 1.36 1.13 0.79 0.53 0.42 
Aziprotryne 9 0.02 -0.74 -0.98 -1.34 -1.62 -1.73 
Barban 10 0.18 -0.19 -0.31 -0.49 -0.63 -0.69 
Biphenyl 11 0.47 0.11 0.00 -0.17 -0.30 -0.35 
Bitertanol 12 0.85 0.16 -0.06 -0.39 -0.64 -0.74 
Bromacil 13 2.60 1.78 1.51 1.12 0.82 0.70 
Buturon 14 1.88 0.90 0.58 0.11 -0.24 -0.39 
Butylate 15 -1.91 -2.50 -2.69 -2.98 -3.19 -3.28 
Carbetamide 16 -1.16 -1.94 -2.19 -2.57 -2.85 -2.96 
Chlorbromuron 17 2.80 1.94 1.67 1.25 0.94 0.81 
Chlorbufam 18 0.18 -0.19 -0.31 -0.49 -0.62 -0.68 
Chloridazon 19 0.80 -0.04 -0.32 -0.72 -1.03 -1.16 
Chlorotoluron 20 2.52 1.58 1.27 0.82 0.48 0.33 
Chloroxuron 21 2.66 1.99 1.77 1.45 1.21 1.10 
Chlorpropham 22 -0.61 -0.75 -0.79 -0.86 -0.91 -0.93 
Cyanazine 23 1.85 1.35 1.19 0.95 0.77 0.69 
Cycluron 24 1.54 0.61 0.32 -0.13 -0.46 -0.60 
Cyproconazole 25 1.73 1.14 0.95 0.66 0.45 0.36 
Cyromazine 26 -1.34 -2.17 -2.44 -2.84 -3.14 -3.26 
Desmetryn 27 2.49 1.91 1.72 1.43 1.22 1.13 
Diclobutrazol 28 1.19 0.36 0.10 -0.30 -0.59 -0.72 
Difenoconazole 29 1.31 0.77 0.60 0.33 0.14 0.06 
Difenoxuron 30 2.13 1.42 1.19 0.85 0.59 0.49 
Dimefuron 31 2.11 1.32 1.06 0.68 0.39 0.27 
Dimethametryn 32 2.18 1.69 1.53 1.29 1.11 1.03 
Dipropetryn 33 2.11 1.55 1.38 1.11 0.91 0.82 
Diuron 34 3.07 2.22 1.95 1.54 1.24 1.11 
Fenbuconazole 35 1.30 0.70 0.51 0.21 0.00 -0.09 
Fenuron 36 1.30 0.22 -0.13 -0.65 -1.04 -1.21 
Fluometuron 37 1.99 0.78 0.39 -0.19 -0.62 -0.81 
Fluoranthene 38 1.56 1.25 1.15 1.00 0.89 0.85 
Flusilazole 39 1.31 0.70 0.51 0.21 -0.01 -0.10 
Flutriafol 40 0.09 -0.39 -0.54 -0.78 -0.95 -1.02 
Hexaconazole 41 1.42 0.93 0.77 0.54 0.36 0.28 
Hexazinone 42 1.60 1.22 1.10 0.91 0.78 0.72 
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Irgarol 1051 43 2.77 2.15 1.95 1.65 1.43 1.33 
Isoproturon 44 2.29 1.37 1.08 0.64 0.31 0.17 
Karbutylate 45 1.51 0.93 0.74 0.46 0.25 0.16 
Lenacil 46 1.85 1.35 1.20 0.96 0.78 0.71 
Lindane 47 0.13 -0.32 -0.46 -0.68 -0.84 -0.91 
Linuron 48 3.15 1.99 1.62 1.06 0.64 0.46 
Metamitron 49 1.65 0.51 0.15 -0.40 -0.81 -0.98 
Methabenzthiazuron 50 1.88 1.16 0.93 0.58 0.32 0.21 
Methoprotryne 51 1.97 1.53 1.39 1.18 1.02 0.95 
Methoxyphenone 52 2.24 1.83 1.69 1.49 1.34 1.28 
Metobromuron 53 1.53 0.67 0.39 -0.02 -0.33 -0.46 
Metoxuron 54 2.32 1.21 0.85 0.32 -0.08 -0.25 
Metribuzin 55 2.57 1.81 1.56 1.19 0.92 0.80 
Monolinuron 56 2.06 0.92 0.56 0.01 -0.40 -0.57 
Monuron 57 2.57 1.37 0.98 0.40 -0.03 -0.21 
Myclobutanil 58 0.55 -0.04 -0.22 -0.50 -0.71 -0.80 
Naphthalene 59 -0.71 -1.13 -1.26 -1.47 -1.62 -1.68 
Neburon 60 3.41 2.32 1.97 1.45 1.06 0.89 
Paclobutrazol 61 -0.50 -0.76 -0.85 -0.97 -1.07 -1.11 
Paraquat 62 1.14 0.54 0.35 0.06 -0.15 -0.24 
Parathion 63 -0.56 -0.95 -1.07 -1.26 -1.40 -1.46 
Penconazole 64 0.71 0.27 0.13 -0.08 -0.24 -0.31 
Phoxim 65 2.50 1.20 0.78 0.15 -0.31 -0.51 
Prochloraz 66 1.99 1.54 1.40 1.18 1.02 0.95 
Prometon 67 1.66 0.88 0.64 0.26 -0.02 -0.13 
Prometryn 68 2.35 1.78 1.59 1.31 1.11 1.02 
Propazine 69 1.92 1.15 0.91 0.54 0.26 0.14 
Propiconazole 70 0.65 0.25 0.12 -0.08 -0.22 -0.28 
Sebuthylazine 71 2.06 1.41 1.19 0.88 0.64 0.54 
Secbumeton 72 2.38 1.50 1.22 0.80 0.49 0.35 
Simazine 73 2.49 1.41 1.07 0.55 0.16 0.00 
Simetryn 74 2.72 1.94 1.69 1.32 1.04 0.92 
Tebuconazole 75 0.92 0.34 0.16 -0.12 -0.33 -0.42 
Tebuthiuron 76 1.98 1.11 0.83 0.42 0.10 -0.03 
Terbacil 77 2.33 1.55 1.30 0.92 0.64 0.52 
Terbumeton 78 2.38 1.61 1.36 0.99 0.71 0.59 
Terbuthylazine 79 2.24 1.64 1.45 1.16 0.94 0.85 
Terbutryn 80 2.33 1.87 1.72 1.50 1.33 1.26 
Tetraconazole 81 0.63 0.11 -0.05 -0.30 -0.49 -0.57 
Triadimefon 82 0.51 -0.01 -0.18 -0.43 -0.62 -0.70 
Triadimenol 83 0.37 -0.13 -0.29 -0.53 -0.71 -0.78 

Table 2.3 – Toxicity (Log1/EC) data of 83 chemicals. 
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The chemicals are currently commonly used: antifouling agents, 
antioxidants, bactericides, chemotherapeutics, disinfectants, fungicides, 
herbicides, insecticides, tools in physiological research and industrial 
chemicals. Since the obtained Hasse diagram was quite complex (26 
levels, 2788 comparabilities, 1230 incomparabilities) and thus difficult to 
interpret, a cluster analysis by Single Linkage algorithm and Euclidean 
distance, was performed to define a homogeneous subset of chemicals. 
Fifteen clusters were found with a similarity level of 90%. Figure 2.4 
shows the Hasse diagram obtained on the 83 chemicals, the chemicals 
(circles) being coloured according to the cluster they belong to. 
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Figure 2.4 –Hasse diagram on toxicity data of 83 chemicals. 
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It can be highlighted that Cluster analysis and the Hasse diagram 
technique provide comparable information on the overall toxicity of the 
studied chemicals: there is quite good agreement between clusters and 
levels. Cluster 1 is composed of highly toxic chemicals, located at the 
highest level in the Hasse diagram, while clusters 14 and 15 collect 
chemicals of low toxicity. Also the centrotypes of each cluster were 
ranked in a Hasse diagram (Figure 2.5). 

The obtained diagram is much clearer than the previous one. Cluster 
elements being characterised by a similarity level of 90% are considered 
similar enough to be assumed equivalent. The main order relations 
appear to be preserved by the clustering. Clusters 2 and 3 both consist 
of highly toxic chemicals showing a different kind of toxicity: chemicals of 
cluster 2 exhibit lower toxicity than those of cluster 3 at low 
concentrations (EC01, EC10, EC20), but higher toxicity at high 
concentrations (EC50, EC80, EC90). This behaviour results in 
incomparability between Clusters 1 and 2. The same occurs for Clusters 
4 and 5. Thus, both methods are valuable tools to explore element 
relations, and their combined use can help to better understand and 
read the complex diagram. In any case the obtained results depended 
strongly on the clustering performed. 
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Figure 2.5 –Hasse diagram on toxicity data of 83 chemicals. 
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2.2.2 Principal Component Analysis (PCA) and Nonmetric 
Multidimensional scaling 

Principal Component Analysis is one of the best known procedures in 
multivariate statistics. Proposed by Karl Pearson in 1901 and developed 
by Harold Hotelling in 1933 it has been mainly used for data exploration. 
It allows the examination of the correlation pattern among variables and 
an evaluation of their relevance, the visualization of the elements by 
analyzing their inter-co-relationships (outliers, clusters), the synthesis of 
data description discarding noise, the reduction of data dimensionality by 
discarding unnecessary variables, and the finding of principal properties 
in multivariate systems. 
From a mathematical point of view the aim of principal component 
analysis is to transform p-correlated variables into a set of orthogonal 
variables which reproduce the original variance/covariance structure. 
This means rotating a p-th dimensional space to achieve independence 
between variables. The new variables, called principal components, are 
linear combinations of the original variables along the direction of 
maximum variance in the multivariate space, and each linear 
combination explains a part of the total variance of the data. Being  
orthogonal the information contained in each PC is unique. A maximum 
of p principal axes can be derived from the original data containing p 
variables. The new variables are defined by calculating eigenvalues and 
eigenvectors of the correlation matrix C (or the covariance matrix S) 
obtained from the data matrix X. The principal components of a 
dispersion matrix C are found according to the following expression: 
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where XC is the centred data matrix. 
Because of their properties, principal components can often be used to 
summarize, in a few dimensions, most of the variability of a dispersion 
matrix of a large number of variables, providing a measure of the 
amount of variance explained by a few independent principal axes. The 
first two principal components define a plane, which represents the 
largest amount of variance. The elements are projected in this plane in 
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such a way as to preserve, as much as possible, the relative Euclidean 
distances they have in the multidimensional space of the original 
variables.  
Principal component analysis is a reduced space ordination method 
which starts from a scaling of the elements in full-dimensional space, 
representing them in a few dimensions while preserving the distance 
relationships among the elements. However sometimes the aim is not the 
exact preservation of the element distances, but their representation in a 
small and specified number of dimensions plotting dissimilar elements far 
apart in the ordination space and similar elements close to one another. 
For these purposes the Nonmetric Multidimensional Scaling (NMDS) 
method, aimed at preserving ordering relationships among elements, can 
be suitable. It is not limited to Euclidean distance matrices, and contrary 
to PCA, which is an eigenvector method, NMDS does not maximize the 
variability associated with individual axes; NMDS axes are arbitrary. 
Starting from a distance matrix, the number m of dimensions has to be 
chosen a priori: the output provides the coordinates of the N elements on 
the m axes. An iterative process is commonly used: starting from an 
initial configuration of the elements in m dimensions, the adjustment 
process goes on until it converges on a solution. The space of solutions 
can contain several local minima besides the overall minimum and 
strongly depends on the initial element configuration. Several solutions 
can be used: most objective functions are based on the sum of the 
squared differences between the fitted distances dhi and the 
corresponding values forecast by the process $dhi . Several variants have 
been proposed. The one commonly used in NMDS programs is the one 
called Stress, and defined as follows: 
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Another expression frequently used is defined as: 
 

Stress formula
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The denominators in the above expressions are scaling terms that make 
the objective functions dimensionless and produce Stress values 
between 0 and 1. All the objective functions are measures of how far the 
reduced space configuration is from the original one. 
When a preprocessing tool, like cluster analysis, principal component 
analysis or multidimensional scaling is used to reduce the number of 
elements or attributes to be used in the ranking analysis, metric 
information, which is not required by the Hasse diagram technique as it 
extracts only ordinal information, becomes mandatory.  
An ordinal scale possesses no natural origin, and distances between 
points of scale are undefined. It simply preserves the ranks of the 
elements. Ordinal scale tends to be discrete rather than continuous. 
Since an ordinal scale does not have the property of distance among its 
values, but only reflects monotonically increasing and decreasing 
sequences of magnitudes, it is referred to as “nonmetric”. Metric scaling 
is usually seen as a “stronger” property than ordinal scaling, and this 
means that element ranking based on a set of attributes is seen as “basic 
information” which is supplemented with metric information. As a 
consequence, if a metric preprocessing tool is used, its effect on the data 
has to be analyzed, i.e. there must be the clarification of how 
preprocessing influences ordinal information. Thus information 
preservation is the minimal requirement that arises whenever several 
data analysis methods are combined. 
Ordinal data can characterize three main different situations: first, 
multidimensional continuity is not observed, and there are integer ranks 
from which underlying continuity has to be estimated. Second, continuity 
can exist but cannot be used because of excessive measurement error 
or nonlinearity of unknown form. In this case the original variables can be 
replaced by their rank orders to restore linearity and delete much of the 
error: as a consequence of this action metric information is lost from the 
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sampled values. Third, continuity may not exist at all: in this case the 
data are purely qualitative or nonmetric.  
 
 
2.2.3 Principal Component Analysis on intrinsically continuous ordinal 
variables  

A relatively straightforward approach to principal component analysis of 
ordinal data is the assumption of underlying continuity for the samples, 
not observable directly but consequently approximated by an ordinal 
scale. As the ordinal scales are invariant to continuous monotonic 
transformations, positive integers are used. A typical situation is the one 
in which N judges are asked to express a preference (agreements) on 
the scale 1,2,..,k, concerning a set of p products. In such a case the aim 
of the factor analysis is to provide an interval scale estimate of the 
multidimensional continua which generated the observed rankings. 
Another application of principal component analysis on ordinal variables 
is that of a measuring or scaling device of concepts which are intrinsically 
multidimensional. In this case the observed variables are chosen to 
reflect the underlying multidimensional scale. If the variables are 
correlated, a reduced number of dimensions can be selected to develop 
a scale to estimate the relative position of each sample on the scale. 

 
 
2.2.4 Principal Component Analysis on ranked values obtained from a 
continuous scale 

When data observed on a continuous scale are characterized by large 
measurement errors or unknown forms of nonlinearity among the 
variables, “quantitative” information cannot be used; in these cases the 
original variables can be replaced by their rank orders. This action allows 
a significant reduction in measurement error and introduces linear 
relations between the variable ranks, even if the original variables are 
nonlinear [Basilevsky, 1994]. Rank-order transformation can obviously 
result in a loss of information if applied to errorless or linear data. A high 
number of ties occur when only a subset of order statistics is used, for 
example, deciles or quartiles. The decision to use a reduced number of 
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order statistics is related to the aim of exploring the “main features” of 
multivariate data, or to perform a preliminary analysis before a more 
complete one. Obviously the results of the analysis depend on the 
chosen ranking scale, however replacing the original data by quartiles or 
deciles may reveal qualitative features which could otherwise be 
submerged by quantitative information. A comparison of principal 
component analyses performed on original data, ranked transformed 
data and on quartiles were conducted by Goldstein [Goldstein,1982] on 
data for social and disease variables for 21 wards of Hull, England. For 
each ward the following quantitative information was collected: crowding, 
number of toilets, number of cars, unskilled, jaundice, measles, scabies. 
The original values, the ranked transformed values and the quartile and 
binary values are shown in Tables 2.3, 2.4, 2.5 and 2.6, respectively.  
 

Ward Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Quantitative data: counts 

1 28 222 627 86 139 96 20 
2 53 258 584 137 479 165 31 
3 31 39 553 64 88 65 22 
4 87 389 759 171 589 196 84 
5 29 46 506 76 198 150 86 
6 96 385 812 205 400 233 123 
7 46 241 560 83 80 104 30 
8 83 629 783 255 286 87 18 
9 112 24 729 255 108 87 26 

10 113 5 699 175 389 79 29 
11 65 61 591 124 252 113 45 
12 99 1 644 167 128 62 19 
13 79 276 699 247 263 156 40 
14 88 466 836 283 469 130 53 
15 60 443 703 156 339 243 65 
16 25 186 511 70 189 103 28 
17 89 54 678 147 198 166 80 
18 94 749 822 237 401 181 94 
19 62 133 549 116 317 119 32 
20 78 25 612 177 201 104 42 
21 97 36 673 154 419 92 29 

Table 2.3 – Original quantitative data for 21 Wards of Hull, England 1968-1973. 
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Ward Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Ranked data 

1 2 12 9 5 5 7 3 
2 6 14 6 8 20 16 10 
3 4 6 4 1 2 2 4 
4 13 17 17 13 21 19 18 
5 3 7 1 3 7 14 19 
6 17 16 19 16 16 20 21 
7 5 13 5 4 1 9 9 
8 12 20 18 20 12 5 1 
9 20 3 16 19 3 4 5 

10 21 2 13 14 15 3 7 
11 9 9 7 7 10 11 14 
12 19 1 10 12 4 1 2 
13 11 15 14 18 11 15 12 
14 14 19 21 21 19 13 15 
15 7 18 15 11 14 21 16 
16 1 11 2 2 6 8 6 
17 15 8 12 9 8 17 17 
18 16 21 20 17 17 18 20 
19 8 10 3 6 13 12 11 
20 10 4 8 15 9 10 13 
21 18 5 11 10 18 6 8 

Table 2.4 – Ranked data for 21 Wards of Hull, England 1968-1973. 
 

Ward Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Quartile data 
1 1 3 2 1 1 2 1 
2 2 3 2 2 4 4 2 
3 1 2 1 1 1 1 1 
4 3 4 4 3 4 4 4 
5 1 2 1 1 2 3 4 
6 4 4 4 4 4 4 4 
7 1 3 1 1 1 2 2 
8 3 4 4 4 3 1 1 
9 4 1 4 4 1 1 1 

10 4 1 3 3 3 1 2 
11 2 2 2 2 2 3 3 
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12 4 1 2 3 1 1 1 
13 3 3 3 4 3 3 3 
14 3 4 4 4 4 3 3 
15 2 4 3 3 3 4 4 
16 1 3 1 1 2 2 2 
17 3 2 2 2 2 4 4 
18 4 4 4 4 4 4 4 
19 2 2 2 2 3 3 3 
20 2 1 3 3 2 2 3 
21 4 1 2 2 4 2 2 

Table 2.5 – Quartile data for 21 Wards of Hull, England 1968-1973. 
 

Ward Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Binary data 
1 1 2 1 1 1 1 1 
2 1 2 1 1 2 2 1 
3 1 1 1 1 1 1 1 
4 2 2 2 2 2 2 2 
5 1 1 1 1 1 2 2 
6 2 2 2 2 2 2 2 
7 1 2 1 1 1 1 1 
8 2 2 2 2 2 1 1 
9 2 1 2 2 1 1 1 

10 2 1 2 2 2 1 1 
11 1 1 1 1 1 2 2 
12 2 1 1 2 1 1 1 
13 2 2 2 2 2 2 2 
14 2 2 2 2 2 2 2 
15 1 2 2 2 2 2 2 
16 1 2 1 1 1 1 1 
17 2 1 2 1 1 2 2 
18 2 2 2 2 2 2 2 
19 1 1 1 1 2 2 2 
20 1 1 1 2 1 1 2 
21 2 1 2 1 2 1 1 

Table 2.6 – Binary data for 21 Wards of Hull, England 1968-1973. 
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The aim of the analysis was to explore rank-transformation capability to 
reduce and delete measurement error from the data.  
Correlation analysis was performed on the original data, the ranked 
transformed data and the quartile data. The multivariate correlation in 
the three sets of data was estimated by the K correlation index 
[Todeschini et al., 1998] which measures the total quantity of correlation 
contained in the data, from the eigenvalue distribution obtained from the 
eigenvalue decomposition of the corresponding correlation matrix.  
The K index is defined as the following: 
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λj being the set of p eigenvalues obtained by PCA applied to the 
correlation matrix of a data set. The denominator corresponds to the 
maximum value reached by the numerator and is used to scale the 
values between 0 and 1. The K correlation index, being a redundancy 
index, takes a value of 1 when all the variables are correlated and 0 
when they are uncorrelated.  
The multivariate correlation index K calculated on the original, rank-
transformed and quartile data, takes values 0.57, 0.58, 0.59 and 0.47, 
respectively. Moreover the pair correlations for the four datasets were 
analyzed and the corresponding matrices are reported in Tables 2.7, 2.8. 
2.9 and 2.10, respectively. Both the correlation matrices and the rotated 
loadings (Tables 2.11, 2.12, 2.13 and 2.14), reveal close similarity in the 
three analyses, indicating that the relationship among the variables is 
approximately linear. 
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 Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Crowding 1.000       

N. Toilet 0.084 1.000      

N. Car 0.733 0.641 1.000     

Unskilled 0.779 0.480 0.869 1.000    

Jaundice 0.380 0.487 0.534 0.403 1.000   

Measles 0.055 0.522 0.375 0.184 0.542 1.000  

Scabies 0.181 0.378 0.409 0.180 0.425 0.823 1.000 

Table 2.7 – Correlation matrix of social and disease variables in the Wards. 
 

 Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Crowding 1.000       
N. Toilet -0.200 1.000      
N. Car 0.675 0.495 1.000     

Unskilled 0.717 0.305 0.879 1.000    
Jaundice 0.330 0.494 0.512 0.444 1.000   
Measles -0.103 0.645 0.296 0.139 0.552 1.000  
Scabies 0.070 0.396 0.262 0.142 0.487 0.879 1.000 

Table 2.8 – Correlation matrix of the ranks of social and disease variables in the 
Wards. 
 

 Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Crowding 1.000       
N. Toilet -0.105 1.000      
N. Car 0.694 0.388 1.000     

Unskilled 0.779 0.263 0.924 1.000    
Jaundice 0.447 0.484 0.541 0.484 1.000   
Measles 0.005 0.558 0.197 0.116 0.595 1.000  
Scabies 0.079 0.374 0.235 0.189 0.521 0.853 1.000 

Table 2.9 – Correlation matrix of the quartile ranks of social and disease 
variables in the Wards. 
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 Crowding N. Toilet N. Car Unskilled Jaundice Measles Scabies 

Crowding 1.000       
N. Toilet 0.045 1.000      
N. Car 0.809 0.236 1.000     

Unskilled 0.618 0.236 0.618 1.000    

Jaundice 0.427 0.427 0.618 0.427 1.000   

Measles 0.045 0.236 0.236 0.045 0.427 1.000  

Scabies 0.045 0.045 0.236 0.236 0.236 0.809 1.000 

Table 2.10 – Correlation matrix of the binary data of social and disease 
variables in the Wards. 
 

 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Crowding 0.958 0.047 -0.116 0.171 0.031 0.179 0.069 

N. Toilet 0.162 0.238 0.936 0.196 -0.031 -0.030 -0.015 

N. Car 0.793 0.230 0.444 0.195 0.011 0.006 -0.289 

Unskilled 0.887 0.029 0.325 0.112 -0.046 -0.302 0.017 

Jaundice 0.251 0.268 0.210 0.906 -0.024 -0.006 -0.015 

Measles 0.017 0.850 0.268 0.270 -0.362 -0.032 0.004 

Scabies 0.127 0.961 0.116 0.127 0.169 0.017 -0.032 

Expl. Variance 2.439 1.831 1.322 1.028 0.165 0.125 0.090 

Table 2.11 – Varimax-rotated loadings of the original social and disease 
variables in the Wards of Hull. 
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 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Crowding -0.008 0.856 -0.348 0.175 -0.341 -0.017 0.012 

N. Toilet 0.288 0.120 0.928 0.198 0.036 0.010 0.007 

N. Car 0.139 0.887 0.340 0.160 -0.016 0.006 0.229 

Unskilled 0.033 0.944 0.158 0.150 0.177 0.003 -0.167 

Jaundice 0.315 0.288 0.209 0.880 -0.014 0.007 0.005 

Measles 0.870 0.012 0.373 0.222 0.036 0.232 0.006 

Scabies 0.970 0.081 0.083 0.161 -0.019 -0.137 0.008 

Expl. Variance 1.900 2.514 1.313 0.967 0.151 0.073 0.081 

Table 2.12 – Varimax-rotated loadings of the ranks of social and disease 
variables in the Wards of Hull. 
 

 

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Crowding 0.772 0.001 -0.226 0.232 -0.547 0.008 -0.006 

N. Toilet 0.132 0.254 0.942 0.166 0.061 0.015 0.006 

N. Car 0.934 0.096 0.222 0.172 0.027 0.005 0.199 

Unskilled 0.969 0.062 0.108 0.130 -0.044 -0.014 -0.160 

Jaundice 0.336 0.362 0.227 0.835 -0.082 0.016 0.004 

Measles 0.001 0.868 0.313 0.242 -0.030 0.298 0.005 

Scabies 0.103 0.965 0.099 0.143 0.019 -0.168 0.002 

Expl. Variance 2.548 1.893 1.158 0.904 0.314 0.118 0.065 

Table 2.13 – Varimax-rotated loadings of the quartile ranks of social and 
disease variables in the Wards of Hull. 
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 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Crowding 0.732 0.506 -0.280 -0.127 -0.239 0.219 0.096 

N. Toilet 0.419 -0.114 0.845 0.211 -0.228 0.007 0.042 

N. Car 0.875 0.285 -0.117 -0.156 -0.175 -0.280 -0.082 

Unskilled 0.734 0.337 -0.102 0.523 0.234 0.056 -0.083 

Jaundice 0.787 -0.051 0.301 -0.362 0.390 0.013 0.062 

Measles 0.516 -0.809 -0.072 -0.129 -0.095 0.153 -0.160 

Scabies 0.485 -0.744 -0.353 0.223 -0.013 -0.101 0.160 

Expl. Variance 3.135 1.674 1.037 0.555 0.356 0.163 0.079 

Table 2.14 – Varimax-rotated loadings of the binary data of social and disease 
variables in the Wards of Hull. 
 
In the four principal components analyses performed, the first component 
mainly encodes information related to crowding, number of cars and the 
unskilled. The second component encodes information related to 
measles and scabies while the third and fourth components are mainly 
related to the number of toilets and jaundice respectively. The analyses 
are very similar to each other, revealing that replacing continuous data by 
ordered statistics of ranks or quartiles results in little loss of information. 

Moreover partial order rankings by the Hasse diagram technique were 
performed using the original data, ranked data, quartile and binary data 
and the correspondent principal components, with the purpose of finding 
how the Hasse diagram changes, becoming simpler after a 
preprocessing analysis, and to compare the obtained results. The Hasse 
diagram developed on the seven original variables is shown in Figure 
2.6: it is arranged in three levels, with three isolated elements, seven 
maximals and eight minimals and is characterized by 46 comparable 
pairs of elements counted in only one direction and 328 contradictions. 
The Hasse diagram developed on the four principal components 
calculated on the original data is shown in Figure 2.7: it is again arranged 
in three levels, with four isolated elements, five maximals and ten 
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minimals and is characterized by 27 comparable pairs of elements and 
366 contradictions. 
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Figure 2.6 – Hasse diagram on the original quantitative data of social and 
disease variables in the Wards of Hull. 
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Figure 2.7 – Hasse diagram on the principal components calculated on 
quantitative data of social and disease variables in the Wards of Hull. 
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It can be observed that the number of comparable pairs of elements 
decreases whereas the number of contradictions increases, revealing 
that the principal components calculated on the original quantitative data 
are not able to simplify the original diagram and reduce the 
incomparabilities. Two main differences between the two diagrams can 
be highlighted: the element 13 is underestimated by the principal 
components with respect to the original data, being in the latter a 
maximal element, while the element 16 is overestimated by the 
components, being a minimal element in the diagram performed on 
original data. 
 
The Hasse diagram developed on the seven rank transformed variables 
is exactly the same as the one obtained on the original data. 

The Hasse diagram developed on three principal components calculated 
on ranked transformed data is shown in Figure 2.8: it is a four level 
diagram with four maximals, one isolated and nine minimals. It presents 
59 comparable pairs of elements and 302 contradictions. 
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Figure 2.8 – Hasse diagram on the principal components calculated on ranks of 
social and disease variables in the Wards of Hull. 
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The Hasse diagram developed on quartile data is shown in Figure 2.9. It 
is organized in six levels, with two maximal equivalent elements, four 
minimals and no isolated elements. The number of comparabilities has 
increased greatly, from 46 (original data) to 93, while the 
incomparabilities decreased significantly, from 328 (original data) down 
to 236. The diagram is now clear in appearance, the relations among the 
elements being more evident and not one isolated element is now 
present. 
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Figure 2.9 – Hasse diagram on the quartile data of social and disease variables 
in the Wards of Hull. 
 
 
 
 



Partial ranking theory 

76 

The Hasse diagram developed on three principal components calculated 
on quartile data is shown in Figure 2.10: it is a five level diagram with four 
maximals, three isolated and six minimals. It presents 60 comparable 
pairs of elements and 302 contradictions. 

 

 

1

2

3

4

5 6

7

8 9

10 11 12

13

14 15

16

17

19

20

21

 

Figure 2.10 – Hasse diagram on the principal components calculated on quartile 
data of social and disease variables in the Wards of Hull. 
 
The Hasse diagram developed on binary data is shown in Figure 2.11. It 
is organized in six levels, with five maximal equivalent elements, one 
minimal and no isolated elements. The number of comparabilities has 
increased greatly, from 46 (original data) to 149, while the 
incomparabilities decreased significantly, from 328 (original data) down 
to 150. The diagram is now very clear in appearance and the relations 
among the elements are even more evident than in the quartile Hasse 
diagram. 
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Figure 2.11 – Hasse diagram on binary data of social and disease variables in 
the Wards of Hull. 
 
Finally, the Hasse diagram developed on three principal components 
calculated on binary data is shown in Figure 2.12: it is a three level 
diagram with 69 comparable pairs of elements and 310 contradictions. 
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Figure 2.12 – Hasse diagram on principal components calculated on binary data 
of social and disease variables in the Wards of Hull. 

 
Table 2.15 summarises the differences among the diagrams: 
 
Dataset Variables Levels Comparability Incomparability 

Original data 7 3 46 328 

PCA on original data 4 3 27 366 

Ranked data 7 3 46 328 

PCA on ranked data 3 4 59 302 

Quartile data 7 6 93 236 

PCA on quartile data 3 5 60 302 

Binary data 7 6 149 150 

PCA on binary data 3 3 69 310 

Table 2.15 – Characteristics of the Hasse diagrams. 
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According to the results obtained, it seems that if the Hasse diagram 
performed on the original data is characterized by too many 
contradictions, induced by data variability that was probably due to 
measurement error, rank transformation like quartile and binary 
transformations appears a more suitable approach than Principal 
Component data reduction. Therefore, broad order statistics seems to 
be a very useful tool to support the partial order ranking technique as it 
allows the significant reduction, or even the deletion, of measurement 
error, thus solving the incomparabilities of Hasse diagrams. Instead 
Principal Component Analysis is a common pre-processing tool to be 
used when the purpose is to synthesize data description, discarding 
noise, to reduce data dimensionality, discarding unnecessary variables, 
and to find principal properties of the multivariate systems. 

Moreover, as a high number of ties occurs when only a subset of order 
statistics is used, for example, deciles or quartiles, broad order statistics 
provides a significant object reduction. Thus a comparison with cluster 
analysis was performed, applying quartiles and binary transformation to 
the toxicity data used above for the cluster example (Table 2.3). The 
Hasse diagrams obtained on quartile and binary data for 83 chemicals 
are shown in Figures 2.13 and 2.14, respectively. The diagram resulting 
from quartile transformation is much more readable than that developed 
on original data; it is arranged on fifteen levels, and the original 83 
chemicals are reduced to 27 equivalence classes. Moreover the number 
of comparabilities increases from 2788 to 3484, while the number of 
incomparabilities decreases from 1230 to 416. 
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Figure 2.13 – Hasse diagram on quartile data of 83 chemicals 
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The diagram that resulted from binary transformation is even simpler 
than the one developed on quartile data; it is arranged on five levels and 
the original 83 chemicals are reduced to 8 equivalence classes. 
Moreover the number of comparabilities increases from 2788 to 4600, 
while the number of incomparabilities decreases from 1230 to 72. 
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Figure 2.14 – Hasse diagram on binary data of 83 chemicals 
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The analysis performed confirms that broad order statistics seems to be 
a suitable pre-processing tool to support the Hasse diagram technique, 
also providing a satisfactory solution to the two main drawbacks: 

• noise and measurement error reduction (or elimination) 

• element reduction 

Moreover, compared with Principal Components analysis, broad order 
statistics has some main advantages: 

• it preserves ordinal relations among the elements 

• it allows an easy result interpretation as it does not create new 
variables 

Compared with traditional Clustering methods, broad order statistics 
shows the following advantages: 

• it does not measure element distance, thus it does not require 
metric choice or a variable scaling procedure 

• it preserves ordinal relations among the elements 

• it is a robust method, as it does not depend on subjective choices 
(metric, number of clusters, element similarity within each 
cluster..).  

 

 

2.2.5 Broad order distance (similarity) matrices 

Broad order statistics logic seems natural, so that it can be used as a 
pre-processing tool to support multivariate data analysis techniques 
when “quantitative” information cannot be used. If a ranked 
transformation has been performed, comparisons among objects require 
a distance measure suitable for rank transformed data. Once quartile 
rank transformation has been performed on the original data matrix, the 
distance between the two elements i and k can be calculated as follows: 
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d q qi k ij kj
j 1

p

= −
=

∑  

qij being the quartile value of the i-th element for the j-th variable. The 
normalized distance is then derived by dividing the distance dik to its 
maximum value, according to the following expression:  

d
d

(Q 1) pi k
* i k=

− ⋅
 

Q being the quartile used and p the total number of variables. This 
distance takes its maximum value of 1 when two objects are entirely 
different, and its minimum value of 0 for objects that are identical over all 
the quartile transformed variables. This distance can be used to measure 
the association between objects. It is an Euclidean metric distance with 
the following properties: 

1. minimum 0; if a = b, then d
ab
* = 0 

2. positiveness; if a π b, then d
ab
* > 0  

3. symmetry: d = d
ab ba
* *  

4. triangle inequality: d + d d
ab bc ac
* * *≥  

Moreover being a normalized distance it allows the evaluation of the 
absolute distance among objects. 

A similarity coefficient can be derived from the above distance as: 

S =(1 - di k i k
* )  

This distance can be used to develop association matrices, like similarity 
or distance matrices, to be successively analyzed by any clustering 
method or multidimensional scaling. 
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2.2.6 Principal Component Analysis on ranks representing qualitative 
random variables 

When the ranks represent qualitative categories related by hierarchical 
monotonic ordering, the only relationship among the rank values is “less 
than” or “greater than”. Three approaches can be used to perform 
principal component analysis on such data. First, the nonmetric nature of 
the data can be ignored, and Spearman’s correlation used to measure 
the correlation among the multivariate rankings. Secondly, a nonmetric 
correlation coefficient, like Kendall’s rank coefficient τ, can be used, and 
the correlation matrix derived from such coefficient decomposition. Third, 
a nonmetric algorithm can be developed where the component structure 
is invariant under monotone transformations of the data. The use of 
Kendall’s rank correlation in place of Spearman’s rank correlation 
corrects for the nonmetric nature of continuous rank order variables. 
However it can be argued that the correction is only partial, as it does not 
involve the algorithm used to compute the loading and the score 
coefficients. An alternative to principal component analysis performed on 
ranked data is simply to recover the minimum dimensional factor 
representation which is invariant under monotone transformations of the 
data. Such an analysis is called “nonmetric”, in contrast to the usual 
“metric” analysis. Kruskal and Shepard [Kruskal and Shepard, 1974] 
developed an algorithm to perform nonmetric analysis by a least squares 
monotonic regression. The minimization is carried out by iterative 
numerical methods. Although it has theoretical appeal, this approach is 
affected by two practical drawbacks: First, it demands long computational 
times, even for not so big data sets. Second, the nonmetric approach can 
hardly compete with principal components when variables are nonlinear, 
and especially when, in addition, they have errors in measurement. 

Rank data lack much of the quantitative information present in 
continuous random variables. If continuity can be reasonably assumed, 
as a working hypothesis or by a priori theoretical reasoning, then a factor 
approach can be used as if the variables were continuous. If the 
continuity assumption is weak, a nonparametric coefficient like Kendall’s 
τ can be used, and in this case the principal component analysis 
provides a fictitious but useful summary of the data. 
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2.3 Indices for partial ranking analysis 
Once a data analysis is performed by a partial order ranking method, as 
for total ranking, the quality of the obtained results has to be established. 
As is usual for regression and classification strategies, the quality of a 
ranking procedure must be evaluated by a deep analysis and by several 
indices, i.e. scalar functions that describe features of a partial ordered 
set, and must allow the comparison of different rankings. A Hasse 
diagram can be roughly described by a set of numbers of relevance, 
counting the number of equivalence classes with more than one element 
(NECA), the maximum number of elements in an antichain (W(E)), the 
number of lines in the longest chain (L(E)), the number of levels (NL), the 
number of elements in the level that contains the most elements (NEL), 
the number of maximals and minimals (N.Max and N.Min), the number of 
equivalence classes (Z), the number of comparabilities (V) and the 
number of incomparabilities (U). Based on these numbers, several 
indices for partial ranking analysis have been proposed and new ones 
are proposed here and compared with those already defined in the 
literature.  
 
 
2.3.1 Information content and degeneracy index 

As for total order ranking, one of the main aspects to be analysed once a 
ranking procedure is performed is the amount of information available 
from the ranking. The indices used to analyse total ranking information 
content and degeneracy can be used analogously for partially ordered 
sets. Thus the information content (Ic), which quantifies the degree of 
diversity of the elements in the partial set, the maximal information 
content (maxIC), which represents the information content needed to 
characterize all of the N elements, the total information content (I), the 
standardized Shannon's entropy (H*), the Hartley information index (IN), 
the Brillouin redundancy index (R), the standardised Gini index (G*), the 
informational energy content (IE), the Bruggermann degeneracy index 
k(N) and the absolute degeneracy degree (D) of a ranking can be 
calculated according to the expressions defined in chapter 1. 
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2.3.2 Comparability degree 

Peculiar information encoded in a partial ordered set is that related to 
the comparability degree which can be quantified by a simple 
comparability index ( χ ),proposed here. Taking into account the number 
of comparabilities in the ranking, it is defined as: 
 

χ χ=
−

≤ ≤V N R
N N

( , )
( ) /1 2

0 1 

 
where the numerator V(N,R) represents the number of comparable pairs 
of elements counted in only one direction and the denominator 
corresponds to the maximum theoretical value and is used to scale the 
values between 0 and 1.  
This index assumes value 1 for the chain case, i.e. total order, which 
represents the maximum comparability, whereas, value 0 is assumed for 
the antichain case where no comparabilities exist. It must be observed 
that this index assumes value 1 for both the one chain case and the 
theoretical case of all elements equal each other, as in both these cases 
the comparability is maximum. 
 
 
2.3.3. Discrimination power by ranking 

When partial order ranking is performed for priority settings it is of great 
relevance to evaluate the ranking procedure capability of discriminating 
elements according to different ranks; the discrimination power by 
ranking (DbyR) of an order set, proposed in a similar formula even for 
totally ordered rankings, can be calculated as: 
 

DbyR D
L

DbyR= − ≤ ≤χ 0 1  

 
where χ  is the comparability degree, D the degeneracy degree and L 
the number of levels. It can be observed that in the case of a chain, total 
order ranking, the comparability degree takes value 1, thus this 
expression is equal to the one defined for total ranking. The 
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discrimination power index ranges from value 0 for the case of one 
antichain to 1 for the case of one chain, and increases with the 
increasing of the comparability degree and the decreasing of the 
degeneracy index: it can be observed that DbyR , by taking into account 
both the number of comparabilities in the ranking and the amount of 
degeneracy of each equivalence class, permits the distinguishing of the 
case of one chain with no degeneracy, for which χ  = 1, D = 0 and thus 
DbyR = 1, from the case of all elements equal to each other for which 
χ  = 1, D = 1 and thus DbyR = 0. 
 
 
2.3.4 Stability indices 

Partial order ranking is determined by the criteria considered in the 
ranking procedure, the actual information base, thus by changing the 
information base (IB), different orders arise. The set of criteria used may 
vary, and an additional criterion may be used in the information basis. 
Thus it is of interest to forecast the effect on the ranking of increasing 
the number of considered criteria, i.e. evaluate the ranking stability. The 
stability index proposed in the literature [Brüggemann and Voigt, 1996] is 
defined as follows: 
 

P N R U N R S N( , ) ( , ) / ( )=  
with 

S N U N R V N R k N R( ) ( , ) ( , ) ( , )= + ⋅ −2  
 

where V(N,R) is the number of comparabilities, U(N,R) the number of 
incomparabilities (counted in both the directions) and k(N,R) the 
Bruggermann degeneracy index. This stability index ranges from 0 to 1: 
when P(N,R) is near zero, then U(N,R) must be near zero and in such a 
case adding an attribute may have quite a big influence on the ranking, 
in fact the higher the number of criteria, the greater the probability that 
contradictions (incomparabilities) in ranking exist among criteria. 
Conversely, when P(N,R) is near 1, then U(N,R) must be near S(N), and 
adding an attribute may have a little influence on the ranking. 
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The quantity P(N,R) does not differentiate between full degeneracy and 
the one chain case because, in both cases, no incomparability appears 
(U(N,R)=0). 
Nevertheless the stability of the case of full degeneracy is different from 
the one chain case stability. An example may be useful to better 
understand this concept: let E be the set constituted of two elements 
(s,t) and IB the actual information base of R attributes 
In the case of full degeneracy: 
 

( , ) ( , )E IB s t= l q  
 
on adding an attribute, full degeneracy may still exist or a chain may 
arise. 
In the case of a chain: 
 

( , ) ,E IB s t= l q  
 

on adding an attribute, the chain may still exist or an antichain may 
arise. Thus, assuming the antichain case to be the case of maximum 
stability, because adding an attribute changes nothing as the number of 
incomparabilities is already maximum, from the moment that the one-
chain is nearer the antichain case than the full degeneracy, the one-
chain case should be more stable than the full degeneracy case. 
To take account of the differing stability of the one chain case and the 
case of full degeneracy, a new ranking stability index is proposed: 

 

StR StRD
L

= ≤ ≤−F
HG

I
KJ

1 0 1
χ

 

 
where D is the absolute degeneracy index, χ  the comparability degree 
defined above and L the number of levels. This index ranges from 0 for 
full degeneracy to 1 for the case of one antichain, and increases with 
decreasing degeneracy, with the comparability decreasing and with the 
decreasing of the number of levels. It can be observed that for a chain 
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with no degeneracy, where L = N and D = 0, StR takes the value of 1/N, 
which is assumed as the stability of an ordered chain with N elements. 
 
 
2.3.5 Complexity index 

The Hasse diagram technique providing a graphical representation of 
the results needs to be clear and not too complex. For this reason, the 
appearance of the diagram can be analysed, as far as concerns 
complexity, by a complexity index [Bruggeman et al., 2001a] defined as 
follows: 

 

C Cx x
U N R

S
= ≤ ≤( , ) 0 1 

 

where U(N,R) is the number of incomparabilities, counted for each pair 
of elements twice, and S is the number of all connections. Thus Cx takes 
the value 1 in the case of a total antichain and the diagram is not 
complex; it takes a value equal to 0 in both the case of a total chain and 
the case of all the elements belonging to one equivalence class, and 
both these cases are considered not complex. It takes a value between 
0 and 1 in all the other cases where some complexity exists. As the 
three cases, chain, antichain and all elements equal, all correspond to a 
not complex diagram, a modified index of complexity is proposed: 

 

C Cx x xC' '= − ≤ ≤−1 0 1χ  

 

This modified index takes the value 0 for one chain and one equivalent 
class (Cx = 0, χ = 1) as well as for a total antichain (Cx = 1, χ = 0) and it 
takes the maximum value 1 when the two contributions of 
incomparability and comparability are equal. 
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2.3.6 Diversity index 

Other useful information encoded in partial ordered ranking is the 
diversity existing among the elements [Pudenz et al., 1999]. A ranking 
characterised by many incomparabilities between elements, indicates 
that the elements analysed are of high diversity as far as concerns the 
criteria they are described with. Therefore antichain corresponds to 
maximum diversity which can be measured as: 

 

div divNEL N R
N

= ≤ ≤−
−

( , ) 1
1

0 1 

 

where NEL(N,R) is the number of elements in the level, which contains 
the most elements, and N is the total number of elements. In an 
antichain NEL(N,R) = N and div = 1; whereas for a chain NEL(N,R) = 1 
and div = 0.  
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Figure 2.15 – Minimum and maximum diversity of ranking. 
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If equivalent classes with more than one element exist, the diversity is 
calculated as: 

 

div divNEL N R
Z

= ≤ ≤−
−

( , ) 1
1

0 1 

 
where Z is the number of equivalent classes. 
 
 
2.3.7 Selectivity index 

The selectivity of a partial ordered ranking is a measure of its capability 
to providing a unique orientation from “good” to “bad“ and therefore it is 
assumed maximum in a total chain and minimum in a total antichain, as 
in this case all the elements are incomparable with each other and no 
orientation is founded. A selectivity index has been proposed [Pudenz et 
al., 1999] and is defined as: 
 

T TL
N

= ≤ ≤−
−

1
1

0 1 

 
and for equivalent classes with more than one element, it is computed 
as: 
 

T TL
Z

= ≤ ≤−
−

1
1

0 1 

 
where Z is the number of equivalent classes. 
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Figure 2.16 – Minimum and maximum selectivity of ranking. 
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2.4 Ranking indices comparison 
To highlight the different information encoded by the indices described 
above, the indices have been calculated and compared on theoretical 
examples and a real data set. 

Theoretical examples 
Figure 2.17 shows the theoretical examples, each of six elements, 
analysed and compared by the ranking indices. 
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Figure 2.17 – Theoretical examples of partially ordered sets 
 

For each theoretical example we calculated: the standardized Shannon's 
entropy index (H*), the standardized Gini entropy index (G*), the 
informational energy content (IE), the Brüggemann standardized 
degeneracy index (kstd), the absolute degeneracy degree (D), the 
comparability degree (χ), the discrimination power by ranking (DbyR), 
the two stability indices (StR and P), the complexity indices (Cx and Cx’), 
the diversity (div) and selectivity indices (T). Table 2.16 lists the values. 
The first case represents a system characterised by complete 
degeneracy with all the elements being equal: the two entropy indices, 
the standardised Shannon and the Gini entropies, take their minimum 
value of 0, whereas degeneracy is maximum according to the three 
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degeneracy indices (IE, kstd, D). In this case all the elements are 
comparable, thus comparability (χ) is maximum and takes a value of 1. 
Elements are not discriminated by ranking (DbyR = 0): according to the 
criteria used they look completely similar, thus no ranking can be 
established. The stability (P and StR) is minimum as adding a criterion is 
likely to change the diagram. The diagram is not complex (Cx = 0, 
Cx’ = 0); no diversity (div = 0) exists among the elements and no 
orientation (T = 0) is provided by the ranking procedure. 
 
 

Example H* G* IE kstd D χ DbyR StR P Cx Cx’ div T 

Case 1 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

Case 2 1.00 1.00 0.17 0.00 0.00 1.00 1.00 0.17 0.00 0.00 0.00 0.00 1.00 

Case 3 1.00 1.00 0.17 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 

Case 4 1.00 1.00 0.17 0.00 0.00 0.67 0.67 0.34 0.33 0.33 0.67 0.20 0.80 

Case 5 0.25 0.33 0.72 0.67 0.80 1.00 0.60 0.05 0.00 0.00 0.00 0.00 1.00 

Case 6 0.38 0.60 0.50 0.40 0.80 1.00 0.60 0.05 0.00 0.00 0.00 0.00 1.00 

Case7 0.56 0.74 0.39 0.27 0.60 0.67 0.37 0.23 0.45 0.33 0.67 0.50 0.50 

Case 8 0.69 0.79 0.33 0.20 0.40 1.00 0.90 0.09 0.00 0.00 0.00 0.00 1.00 

Case 9 1.00 1.00 0.17 0.00 0.00 0.80 0.80 0.33 0.20 0.20 0.40 0.40 0.60 

Case 10 0.87 0.93 0.22 0.07 0.20 0.87 0.82 0.18 0.14 0.13 0.27 0.25 0.75 

Case 11 0.87 0.93 0.22 0.07 0.20 1.00 0.96 0.11 0.00 0.00 0.00 0.00 1.00 

Case 12 0.87 0.93 0.22 0.07 0.20 0.20 0.10 0.77 0.86 0.80 0.40 0.75 0.25 

Case 13 1.00 1.00 0.17 0.00 0.00 0.73 0.73 0.45 0.27 0.27 0.53 0.40 0.40 

Table 2.16 – Numerical examples of ranking indices. 

 

The second case is a chain with maximum entropy and minimum 
degeneracy. Comparability (χ) is maximum as all the elements are 
comparable and, despite the previous case, discrimination power by 
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ranking is maximum (DbyR = 1) providing a totally ordered diagram; the 
ranking procedure is able to discriminate all the elements according to 
their different ranks. The stability P index does not distinguish between 
this case and the previous one, while the proposed StR stability index 
calculates greater stability (equal to 1/N) for the chain than for the one 
equivalent class case. The diagram has no complexity, no element 
diversity and the selectivity is maximum (T = 1) providing a unique 
orientation from “good” to “bad“. The third case corresponds to an 
antichain, with no degeneracy: thus the information content indices and 
the degeneracy indices take the same values as in the previous case. 
The comparability is minimum as elements are not comparable, and the 
ranking procedure provides no discrimination, being unable to assign 
ranks to the elements. Stability is maximum since adding a criterion 
leaves the diagram totally unchanged, as the number of 
incomparabilities does not decrease on increasing the number of criteria. 
The complexity calculated by Cx is equal to 1, while the new Cx’ index 
evaluates the diagram as not complex. Diversity among the elements is 
maximum, no relationships can be found among them, whereas 
selectivity is minimum as no vertical orientation is established. Cases 1 
to 3 are the theoretical extreme cases, all the others are located within 
these extremes.  
Case 4 corresponds to a chain with an isolated element and no 
degeneracy. This case seems similar to the one of a total chain, 
however the ranking index values are quite different. Comparability is 
much lower than the chain case as one element of the six cannot be 
compared with the others, and also discrimination power is lower for the 
same reason: only five elements of the six are discriminated according 
to their ranks, and there is no idea of the isolated element’s relation with 
the others. Stability increases with increasing incomparability: this is the 
reason for the greater stability of case 4 with respect to case 2. The 
complexity estimated by Cx is lower than Cx’, and the diagram has only 
a slight degree of diversity. Selectivity is quite high as vertical orientation 
is provided for five of the six elements. The fifth and sixth cases 
correspond to chains with differently distributed degeneracy: both 
consist of two equivalence classes of different density. The standardised 
Shannon entropy and the standardised Gini entropy take a greater value 
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for case 6 than for case 5. The informational energy content and the 
standardised Brüggemann expression are all influenced by the way the 
degeneracy is distributed in the system, being greater in case 5 than in 
case 6. In contrast, the absolute degeneracy degree takes the same 
value for cases 5 and 6, revealing the presence of two information 
sources in both the posets. All the other ranking indices take the same 
values for case 5 and case 6: the comparability index, the P stability 
index, the complexity, the diversity and the selectivity indices take the 
same values as for the one chain case (case 2), whereas the 
discrimination power by ranking and the stability StR take lower values 
with respect to the one chain case because of their degeneracy. Case 7 
is a chain with two equivalence classes and an isolated element. The 
absolute degeneracy degree provides a higher degeneracy value than 
the informational energy content and the Bruggermann degeneracy, 
which seems to underestimate the degeneracy. Besides high 
comparability, the discrimination power by ranking is low because of the 
high degeneracy; stability calculated by the StR index is lower than that 
by the P index, confirming that the former is more sensitive to system 
degeneracy than the latter. The diversity and selectivity indices take the 
same values as the comparabilities and incomparabilities are perfectly 
balanced. Case 8 represents a chain, with a degeneracy greater than 
case 2 and lower than cases 5 and 6, as confirmed by the information 
content and degeneracy indices. Comparability is maximum; 
discrimination power is high even if the maximum is not reached 
because of the degeneracy. Being a chain, the comparability and 
selectivity indices take the maximum value, whereas the complexity and 
diversity take the minimum and stability is very low. Case 9 corresponds 
to a diagram with three different chains and no degeneracy: 
comparability and discrimination power are high, while stability is low. 
The complexity is lower than that of Cases 4 and 7; moreover the Cx 
index seems to underestimate the complexity with respect to Cx’. 
Diversity exists among the elements, as shown by the incomparabilities 
of elements b, e and f. Selectivity is quite high as three different 
orientations are provided. Case 10 is quite similar to case 9, but 
degeneracy replaces incomparability. This is the reason for the 
decreased element diversity and increased selectivity. Case 11 is a 
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chain again, similar to case 8 but with lower degeneracy, this is the 
reason for the slight increase in discrimination capability. Case 12 is 
characterised by the presence of a short chain, a little degeneracy and 
several incomparabilities. The comparability degree, the discrimination 
power by ranking and the selectivity values are low, while the stability 
and element diversity are high. Case 13 is not too far from case 9, but it 
is characterised by more incomparabilities as indicated by the decreased 
values of comparability degree, discrimination power and selectivity and 
by the increased values of stability.  
It is now evident that the visualisation of the partially ordered set is just 
the first step in the examination of the results of a partial ranking 
procedure; a lot of information can be extracted just by looking at the 
Hasse diagram, but the need to compare different diagrams while 
avoiding any arbitrary interpretation prompts the need for several 
ranking indices. 
 

A case study application 

A partial ranking procedure by the Hasse diagram technique has been 
performed on data of fruit composition [Sicheri and Borsarelli, 1989]. The 
ranking indices proposed in the work were calculated and compared with 
those already defined in the literature. The dataset is reported in Table 
2.17: it consists of 31 fruits described according to their composition. 
The following variables were used in the ranking procedure: eatable 
content (%), water content, protein, lipid, available glucides, amide 
glucides, soluble glucides, fibred glucides, energy, Iron, Calcium, 
Phosphorus, Thiamine, Riboflavin, Niacin, Vitamin A and Vitamin C.  
 

Fruit ID Eat. H2O Prot Lip Glu ava Glu ami Glu sol Glu fib 

Apricot 1 94 86.3 0.4 0.1 6.8 0 6.8 0.6 

Egriot cherry 2 85 84.2 0.8 0 10.2 0 10.2 1 

Pineapple 3 57 86.4 0.5 0 10 0 10 0.4 

Peanut 4 79 7.1 26 47.2 11.2 6.7 4.5 2.3 

Orange 5 80 87.2 0.7 0.2 7.8 0 7.8 0.6 
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Orange juice 6 100 89.3 0.5 0 8.2 0 8.2 0 

Banana 7 65 76.8 1.2 0.3 15.5 2.4 12.8 0.5 

Chestnut 8 69 41 3.5 1.8 42.4 34.3 8.1 1 

Cherry 9 86 86.2 0.8 0.1 9 0 9 1 

Watermelon 10 52 95.3 0.4 0 3.7 0 3.7 0 

Figs 11 75 81.9 0.9 0.2 11.2 0 11.2 0.7 

Prickly pear 12 64 83.2 0.8 0 13 1.6 13 0.3 

Strawberry 13 94 90.5 0.9 0.4 5.3 0 5.3 0.6 

Raspberry 14 100 84.6 1 0.6 6.5 0 6.5 3 

Lemon 15 64 89.5 0.6 0 2.3 0 2.3 0.6 

Lemon juice 16 100 92.1 0.2 0 1.4 0 1.4 0 

Persimmon 17 97 82 0.6 0.3 16 1.6 16 0.5 

Tangerine 18 87 85.3 0.8 0.2 12.8 0 12.8 0.3 

Manderin 19 80 81.4 0.9 0.3 17.6 0 17.6 0.8 

Pomegranate 20 59 80.5 0.5 0.2 15.9 0 15.9 0.2 

Apple 21 94 85.6 0.2 0.3 11 0 11 1 

Apple Cot 22 79 84.3 0.3 1 6.3 0 6.3 1.7 

Sum.Melon 23 47 90.1 0.8 0.2 7.4 0 7.4 0.3 

Wint. Melon 24 51 94.1 0.5 0.2 4.9 0 4.9 0.3 

Medlar 25 66 85.3 0.4 0.4 6.1 0 6.1 0.5 

Walnut 26 58 19.2 10.5 57.7 5.5 2.1 3.4 2 

Pear 27 91 85.2 0.3 0.4 9.5 0 9.5 0.6 

Peach 28 91 90.7 0.8 0.1 6.1 0 6.1 0.6 

Grapefruit 29 70 91.2 0.6 0 6.2 0 6.2 0.6 

Plum 30 89 87.5 0.5 0.1 10.5 0 10.5 0.3 

Grapes 31 94 80.3 0.5 0.1 15.6 0 15.6 0.2 
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Fruit ID Energy Fe Ca P Thi Rib Niam Vit. A Vit. C 

Apricot 1 28 0.5 16 16 0 0 0.5 360 13 

Egriot cherry 2 41 0.4 15 17 0 0.1 0.4 24 7 

Pineapple 3 40 0.5 17 8 0.1 0 0.2 7 17 

Peanut 4 571 3.2 60 239 1.5 0.1 0.4 0 2 

Orange 5 34 0.2 49 22 0.1 0.1 0.2 71 50 

Orange juice 6 33 0.2 15 17 0.1 0 0.4 38 44 

Banana 7 66 0.8 7 28 0.1 0.1 0.7 45 16 

Chestnut 8 189 1.2 38 89 0.2 0.4 1.4 0 18.2 

Cherry 9 38 0.6 30 18 0 0 0.5 19 11 

Watermelon 10 15 0.2 7 2 0 0 0 37 8 

Figs 11 47 0.5 43 25 0 0 0.4 15 7 

Prickly pear 12 53 0.4 30 25 0 0 0.4 10 2 

Strawberry 13 27 0.8 35 28 0 0 0.5 0 54 

Raspberry 14 34 1 49 52 0.1 0 0.5 13 25 

Lemon 15 11 0.1 14 11 0 0 0.3 0 50 

Lemon juice 16 6 0.2 14 10 0 0 0.2 0 43 

Persimmon 17 65 0.3 8 16 0 0 0.3 237 23 

Tangerine 18 53 0.3 30 19 0.1 0.1 0.3 25 37 

Manderin 19 72 0.3 32 19 0.1 0.1 0.3 18 42 

Pomegranate 20 63 0.3 0 10 0.1 0.1 0.2 0 8 

Apple 21 45 0.3 6 12 0 0 0.3 8 5 

Apple Cot 22 34 0.1 4 14 0 0 0.7 0 14 

Sum.Melon 23 33 0.3 19 13 0.1 0 0.6 189 32 

Wint. Melon 24 22 0.3 21 16 0 0 0.5 5 12 

Medlar 25 28 0.3 16 11 0 0.1 0.4 27 1 

Walnut 26 582 2.6 131 238 0.6 0.2 0.8 6 0 
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Pear 27 41 0.3 6 11 0 0 0.1 0 4 

Peach 28 27 0.4 4 20 0 0 0.5 27 4 

Grapefruit 29 26 0.3 17 16 0.1 0 0.2 0 4 

Plum 30 42 0.2 13 14 0.1 0.1 0.5 16 5 

Grapes 31 61 0.4 27 4 0 0 0.1 4 6 

Table 2.17 – Experimental data of fruit composition used for the ranking 
analysis. 

 

By using different subsets of variables, different partial ordered rankings 
were obtained. The variable selection was performed so as to obtain 
significantly different Hasse diagrams and no alimentary meaning is 
necessarily associated with them. The obtained Hasse diagrams were 
analysed and compared by the ranking indices described above. Table 
2.18 shows the ten attribute combinations considered; together with the 
corresponding Hasse diagrams. 
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Table 2.18 – Comparison of Hasse diagrams obtained from different 
combinations of attributes. 
 
As can be easily observed the results of partial ranking analysis depend 
strictly on the attributes used to perform the analysis. The diagrams 
corresponding to the different attribute combinations are fairly different 
from each other. To compare them in a more objective way than the one 
based only on their appearance, the ranking indices were calculated and 
their numerical values are shown in Table 2.19. The informational energy 



Ranking indices comparison 

107 

content (IE) is not reported in the table as, for all the cases, it assumes a 
value of 0.03. 

 

Case H* G* kstd D χ DbyR StR P Cx Cx’ div T 

 1 1.00 1.00 0.00 0.00 0.06 0.06 0.94 0.94 0.94 0.12 0.57 0.07 

 2 1.00 1.00 0.00 0.00 0.13 0.13 0.81 0.87 0.87 0.26 0.37 0.13 

 3 1.00 1.00 0.00 0.00 0.38 0.38 0.51 0.62 0.62 0.76 0.27 0.17 

 4 0.99 1.00 0.00 0.03 0.60 0.59 0.24 0.41 0.40 0.80 0.14 0.28 

 5 1.00 1.00 0.00 0.00 0.53 0.53 0.30 0.47 0.47 0.94 0.30 0.17 

 6 0.74 0.94 0.06 0.53 0.84 0.79 0.04 0.17 0.16 0.32 0.21 0.71 

 7 1.00 1.00 0.00 0.00 0.50 0.50 0.29 0.50 0.50 1.00 0.13 0.37 

 8 0.79 0.96 0.05 0.47 0.90 0.86 0.03 0.11 0.10 0.20 0.25 0.81 

 9 0.93 1.00 0.01 0.17 0.82 0.81 0.07 0.19 0.18 0.36 0.12 0.60 

 10 0.99 1.00 0.00 0.03 0.92 0.92 0.04 0.08 0.08 0.16 0.10 0.83 

Table 2.19 – Numerical values of ranking indices calculated for different 
attribute combinations. 

 

From cases 1 to 10 the number of levels increases as a consequence of 
the decreasing number of incomparabilities. As far as concerns 
information and the degeneracy indices, it must be pointed out that all 
the diagrams show high entropy and low degeneracy. For cases 1, 2, 3, 
5 and 7, the standardised Shannon entropy and Gini entropy take the 
maximum value of 1, while the degeneracy calculated by the 
standardised Brüggemann degeneracy (kstd) and the absolute 
degeneracy degree (D) are equal to the minimum value of 0. The 
diagrams corresponding to the cases (1, 2, 3, 5, 7) are all characterized 
by the absence of degeneracy, each equivalent class being composed 
by only one element. From cases 4, 10, 9 to cases 8 and 6 the entropy 
decreases and degeneracy increases, these cases being based 
respectively on 30, 30, 26, 17 and 15 equivalence classes. This different 
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entropy degree is well encoded in the standardised Shannon entropy, 
whereas the Gini entropy index seems less susceptible to reflecting low 
entropy differences. Analogously, the standardised Brüggemann 
degeneracy (kstd) with respect to the absolute degeneracy index (D) 
seems not able to catch low degeneracy differences. With the increasing 
number of levels from cases 1 to 10, the comparability among the 
elements and the ranking procedure capability of discriminating 
elements according to different ranks (DbyR) increases, even if they are 
not perfectly correlated directly. Case 4 corresponds to a nine level 
diagram, with 278 comparabilities, Case 5 to a ten level diagram with 
245 comparabilities and Case 7 has a twelve level diagram with 231 
comparabilities. Except for small differences, the higher the number of 
levels, the higher the comparability and the higher the discrimination 
power by ranking. As far as concerns the two stability indices, they show 
an opposite trend with respect to the comparability and discrimination 
power indices as they decrease with increasing number of 
comparabilities, tending to 0 for a totally ordered sequence (chain). For 
all the cases analysed the new stability index (StR) takes values smaller 
than the one proposed in the literature (P). For the diagrams 
investigated it is evident that the higher the number of incomparabilities, 
the higher the complexity index Cx value: it takes its highest value for 
Case 1, and smallest for Case 10, the former being the case with the 
higher incomparabilities (874) and the latter that with the lower (74). The 
diagram complexity is evaluated in a different way according to the new 
index Cx’, which takes the maximum value of 1 for the diagram of Case 
7 since the two contributions of incomparability and comparability are 
balanced. The diversity index, being a measure of the diversity degree of 
elements as far as concerns the criteria used to describe them, is 
correlated to the number of incomparabilities and thus takes the highest 
value for Case 1, which has the highest number of incomparabilities 
(874), and the lowest value for Case 10, which has the lowest number of 
incomparabilities (74). An opposite trend is the one of the selectivity 
index which, being a measure of the unique orientation of the diagram, 
tends to 1 when the number of levels tend to the number of elements. 
As pointed out above, one of the main drawbacks of the Hasse diagram 
technique is its strict dependence on the clear appearance of the 
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graphical diagram, since very poorly structured diagrams with more 
incomparabilities than comparabilities, because of the roughness of the 
conflict, are useless. When there are too many contradictions or when 
data observed on a continuous scale are suspected of being affected by 
large measurement error or unknown forms of nonlinearity among the 
variables, “quantitative” information cannot be used. In such cases the 
original variables can be replaced by their rank orders. A high number of 
ties occur when only a subset of order statistics is used, for example, 
deciles or quartiles. The decision to use a reduced number of order 
statistics can be related to the aim of exploring the “main features” of 
multivariate data, or to perform a preliminary analysis before a more 
complete one. Obviously the results of the analysis depend on the 
chosen ranking scale, however replacing the original data by quartiles or 
deciles could reveal qualitative features which would otherwise be 
submerged by quantitative information. As an example of the significant 
reduction of incomparabilities induced by order statistics, the original 
variables used in Case 1, which is the one with the highest number of 
incomparabilities, were replaced by their quartile rank orders. The Hasse 
diagram obtained is shown in Figure 2.18. Circles with a double line 
indicate equivalence classes with more than one element. The diagram 
is made of the following 20 equivalent classes: (1,15), (2,12), (3,6,9), 
(4,8,26), (5), (7,19), (10,16,28,29), (11), (13), (14,22), (17), (18), (20), 
(21), (23), (24), (25), (27), (30), (31). 
The number of incomparabilities decreases from 874 (original data) to 
670 (quartile transformed data), and the number of levels increases from 
3 to 5. 
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Figure 2.18 – Hasse diagram developed on quartile data of H20, lipid and 
energy. 
 
A deeper comparison of the Hasse diagrams developed on the original 
variables (A) and one on the quartile data (B) is provided by the ranking 
indices collected in Table 2.20. 
 

 H* G* IE kstd D χ DbyR StR P Cx Cx’ div T 

A 1.00 1.00 0.03 0.00 0.00 0.06 0.06 0.94 0.94 0.94 0.12 0.57 0.07 

B 0.83 0.98 0.07 0.03 0.37 0.28 0.21 0.49 0.75 0.72 0.56 0.42 0.21 

Table 2.20 – Numerical values of ranking indices calculated on original and 
quartile data of H20, lipid and energy. 
 
As expected, the rank transformation results in a decrease of the 
information content measured by the standardised Shannon and Gini 
entropies, and an increase of the degeneracy by the standardised 
Brüggemann degeneracy (kstd) and the absolute degeneracy degree (D). 
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The comparability (χ) and the ranking capability of discriminating 
elements according to different ranks (DbyR) increases significantly, 
whereas the stability decreases. The diagram complexity measured 
according to the Cx index decreases, as a consequence of the 
decreasing number of incomparabilities, whereas according to the new 
index Cx’ it increases as a consequence of the decreased discrepancy 
between comparabilities and incomparabilities. 
The diversity index, reflecting the incomparability decrease, itself 
decreases in the diagram developed on quartile data, whereas the 
selectivity index reflecting the level increase, increases. 
 
 
 
2.5 Correlation analysis 
A first rough analysis of the relationships among the above-described 
indices was performed by Principal Component Analysis on a data 
matrix made up of twenty-four cases described by the defined eleven 
ranking indices. The first thirteen cases are the theoretical examples of 
Figure 2.17, whereas the other eleven cases are the ones obtained on 
the fruit data. The first six principal components provide 99.7% of the 
total information (note that in the absence of experimental error also less 
informative PCs can be considered). 
Figure 2.19 shows the loading plot relative to the first and second 
components. 
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Figure 2.19 – Loading plot of the PC1 versus PC2. 
 
The first two principal components explain 86.7% of the total variance 
and reveal four main classes of ranking indices, collected in Table 2.21: 
 
 
 

Class Meaning Indices Dual meaning Indices 

1 Entropy H*, G* Degeneracy D, kstd, IE 

2 Ranking 
capability DbyR, T Diversity div 

3 Comparability χ Incomparability StR, P, Cx 

4 Complexity Cx’ - - 

Table 2.21 – Three main classes of ranking indices 
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A first class of indices is constituted by the entropy indices and their 
complementary degeneracy indices (indicated by continuous lines in all 
the PC graphs); as expected, both the standardized Shannon (H*) and 
the Gini entropy indices (G*) are closely correlated and inversely 
correlated to the information energy content (IE), the Brüggemann 
standardized degeneracy index (kstd) and the absolute degeneracy 
degree (D). 
A second class of indices, highlighted by the PC1 – PC2 loading plot, 
represents the ranking capability, i.e. the Hasse diagram 
vertical/horizontal orientation, where DbyR and T measure the vertical 
orientation (total ranking) and div the horizontal orientation, i.e. low total 
ranking ability (signed by hatched lines in all the PC graphs). 
A third class of indices represents comparability versus its dual meaning 
of incomparability, where StR and P are both closely correlated and 
inversely to the comparability χ (signed by dotted lines in all the PC 
graphs). The complexity index Cx also belongs to this class and seems 
closely correlated to the stability P index. 
The new complexity index Cx’ constitutes the fourth class, as it shows 
different behaviour from the indices of the third class. 
The remaining four components (13.0 % of explained variance) explain 
the internal differences among the indices of each class. 
In particular, the loading plot of the third and fourth PCs (10.2% of 
explained variance, Figure 2.20) highlights how the behaviour of the 
complexity index Cx’ differs from all the other ranking indices; moreover 
also the entropy/degeneracy indices show different behaviour (class 1), 
decorrelating D from kstd and G* from H*. For the second class, the same 
graph highlights the difference between T and DbyR and, for the third 
class, the difference of StR from P and χ. 
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Figure 2.20 – Loading plot of the PC3 versus PC4. 
 
 
Finally, further differences are shown in the third loading plot (2.1% of 
explained variance, Figure 2.21) for IE and kstd (class 1), DbyR and div 
(class 2).  
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Figure 2.21 – Loading plot of the PC5 versus PC6. 
 
Thus, according to this analysis, only G* and kstd appear quite similar in 
their behaviour. The indices proposed (D, χ, DbyR, StRand Cx’) 
encompass all three classes of indices, with a meaning different from 
existing indices.  
 
 
2.6 Criteria similarity analysis 
Once partial ordered ranking has been developed, it is of interest to 
establish the degree of similarity among the criteria used to develop the 
ranking: for this purpose the criteria similarity index CS is proposed. For 
each pair of criteria j and k, the similarity between the two criteria is 
calculated according to the following expression: 

 

CS CSjk
jk

jk
U

N N
= − ≤ ≤

−
1 0 1

1( )
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Ujk being the number of incomparabilities in the diagram developed by 
using only the two criteria j and k, and N the total number of elements. In 
the case of an antichain, the number of incomparabilities being 
maximum and equal to N(N-1), the similarity between the two 
considered criteria is zero. 

Once the similarity among each pair of criteria is calculated, the overall 
similarity among all the criteria can be defined: 

 

CS j CS
CS

R R
k

jkjk=
⋅

≤ ≤
∑

−
>

2
0 1

1( )
 

 

R being the total number of criteria used for the order ranking. 

For a total ordered ranking, the number of incomparabilities is zero, thus 
each contribution from a criteria pair being equal to 1, the overall 
similarity among the criteria reaches the maximum value of 1.  

 
 
2.7 Sensitivity analysis 
The analysis of the structure of an ordered set includes an analysis of 
the influence of each attribute on the ranking, i.e. the sensitivity analysis.  
 
2.7.1 Senstivity by W matrix 

The approach proposed by Halfon and Bruggermann [Halfon and 
Brüggemann, 1998; Brüggemann et al. ,2001b] to assess the importance 
of an attribute requires a comparison of the results from ranking 
performed with different attribute subsets; this implies Hasse diagram 
comparisons. To compare Hasse diagrams an appropriate metric must 
be found, by which the distance between any two partial order rankings 
can be calculated. The results are stored in a matrix W, which is a way 
of defining the distances among different posets. Matrix W stores the 
mutual Hasse diagram comparison. Selecting an element of interest, 
preferably a maximal element, is the starting point for the analysis. The 
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selected element is called the “key element”. The analysis of the key 
element requires a search for all the elements located lower than the key 
element that can be reached by a path, a sequence of connecting 
edges. These elements together with the elements equivalent but not 
identical to the key element are called successors. The set of 
successors of a key element “k” is denoted as G(k) and, by definition, 
G(k) does not include the key element itself. A successor set depends 
on the key element and on the attributes used. The sensitivity analysis is 
based on the analysis of different successor sets arising from different 
attribute subsets. To measure each attribute’s influence on ranking, 
Hasse diagrams from each attribute subset are compared. This is done 
by selecting a key element and quantifying the effect of each attribute 
set on its successor set. For this purpose the residual set R(k,B,C) is 
introduced: 
 

R k B C G k B
G k C

( , , ) ( , )
( , )

=  

 
G(k,B) being the successor set of the key element k on the B attribute 
subset , and G(k,C) being the successor set on the C attribute subset. 
The symmetric difference set W(k,B.C) is defined as: 
 

W k B C card R k B C card R k C B( , , ) ( , , ) ( , , )= +  
 
The square matrix, denoted by W(k) has L = 2R-1 columns and rows, 
respectively. The sensitivity analysis is performed starting from the W 
matrix. However this matrix does not always need to be analysed in its 
entirely because, in the most of the cases, the interest is only in a few 
attribute sets. Thus, the sensitivity analysis of the criteria can be 
performed with the following steps: 

• To find each criterion’s relevance, requiires only the comparison 
of the full attribute set A with the Ai subsets, thus only one row of 
the W matrix is of interest: 

 
W k A A W k A A W k A A W k A AR( , , ) ( , , ) ( , , )..... ( , , )1 2  
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• To find each attribute’s influence it is enough to compare the 
diagram induced by the full set of attributes (A) with those 
induced by the attributes sets with only (R-1) attributes. The 
effect of dropping one attribute is given by the remaining R 
entries of the first row. The remaining R matrix element of the 
first row generates a “sensitivity rule” of the key element k: 

 
σ( ) ( , , )....... ( , , )k W k A A W k A AR= 1  

where: 
 
A r r rR= 1 2, ,.........,l q  full set of attributes 

A i i i Rr r r r= − +1 1 1,...., , ,......,l q  i-th attribute skipped 

 
σ(k) can also be written as [σ(1), σ(2),…, σ(R)]. The larger σi, the 
larger is the symmetrized difference between G(k,A) and G(k,Ai) 
and thus the larger the influence of the attribute ri on the position 
of the key element k within the Hasse diagram on A compared 
with that on Ai. 
 

• The matrix W(k) depends on the selection of the key element k. 
When more elements are to be analysed, the generalised 
expression W(K,Ai,Aj) is introduced: 

 

W K A A A Ai j i j
k

N

W k k K( , , ) ,( , )= ∈
=

∑
1

 

 

where K is any set of key elements and W K W k
k

N

( ) ( )=
=

∑
1

.  

 
• All elements are selected as the key element; therefore instead 

of the W(k) matrix we have a W(E), i.e. total matrix of set E, is 
analysed as measure of sensitivity which is quantified by: 

 
 

σ i iW E A A i R= ≤ ≤( , , ) 1  
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W( )

( , , ) ( , , ) ........ ( , , )
( , , ) ( , , ) ........ ( , , )

........................................................................

............................K

W k A A W k A A W k A A
W k A A W k A A W k A A

R

R

=

1 1 1 2 1

2 1 2 2 2

............................................
........................................................................
........................................................................

( , , ) ................................. ( , , )W k A A W k A AN N R1

 

 

σ 1 1
1

=
=

∑W k A Aj
j

N

( , , )  = influence of the attribute 1. 

 
An example of sensitivity analysis is provided here on six elements 
described by four criteria. Table 2.22 shows the data matrix.  
 
 
 

Element r1 r2 r3 r4 

a 5 9 11 12 

b 4 6 22 10 

c 1 2 4 16 

d 1 2 4 16 

e 1 2 4 16 

f 3 1 2 3 

Table 2.22 - Data matrix 
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The diagrams for comparison are illustrated in Figure 2.22. 
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Case A – Case A2 
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Case A4 

Figure 2.22 – Hasse diagrams for different attribute sets on example data. 
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The corresponding total matrix for different combinations of attributes is: 
 

W =

W A A W A A W A A W A A W A A
W A A W A A W A A W A A W A A
W A A W A A W A A W A A W A A
W A A W A A W A A W A A W A A
W A A W A A W A A W A

( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( ,

1 2 3 4

1 1 1 1 2 1 3 1 4

2 2 1 2 2 2 3 2 4

3 3 1 3 2 3 3 3 4

4 4 1 4 2 4 A W A A3 4 4

0 3 0 1 6
3 0 3 4 9
0 3 0 1 6
1 4 1 0 7
1 0 0 0 0
6 9 6 7 0

) ( , )

=

=

 

 
 
As an example the W(A, A4) value is calculated as follows: 
 
W (a, A, A4) = card R(a, A, A4) + card R(a, A4, A) = 0 + 3 = 3 
W (b, A, A4) = card R(b, A, A4) + card R(b, A4, A) = 0 + 3 = 3 
W (c, A, A4) = card R(c, A, A4) + card R(c, A4, A) = 0 + 0 = 0 
W (d, A, A4) = card R(d, A, A4) + card R(d, A4, A) = 0 + 0 = 0 
W (e, A, A4) = card R(e, A, A4) + card R(e, A4, A) = 0 + 0 = 0 
W (f, A, A4) = card R(f, A, A4) + card R(f, A4, A) = 0 + 0 = 0 
 

W(A, A4) = W k A Aj
j

N

( , , )4
1

3 3 0 0 0 0 6
=

∑ = + + + + + =  

 
From the W matrix, the sensitivities are: 
 

σ 1 1
1

3= =
=

∑W k A Aj
j

N

( , , )  
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σ 2 2
1

0= =
=

∑W k A Aj
j

N

( , , )  

σ 3 3
1

1= =
=

∑W k A Aj
j

N

( , , )  

σ 4 4
1

6= =
=

∑W k A Aj
j

N

( , , )  

 
Therefore, attribute r4 is the most important, whereas attribute r2 does 
not have any influence on the order. 
 
 
2.7.2 Backward sensitivity analysis 

Another way to evaluate the importance of the attributes used to perform 
partial ranking is proposed here. The method consists in a stepwise 
technique starting with all the attributes and then selecting one attribute 
at a time, based on Hasse diagram comparison evaluated by the 
similarity index S (see Chapter 3). According to this index, the similarity 
between two partial order rankings is calculated comparing their Hasse 
matrices (A and B) as follows: 
 

S A B S A B
h h

N N
st
A

st
B

st( , ) ( , )
( )

= − ≤ ≤
−

⋅ −

∑
1 0 1

2 1
 

 
where: 
hst is the entry of Hasse matrix for each pair of elements s and t and 

s t N s t h
if y s y t y IB
if y s y t y IBst

r r r

r r r, , ,...,
( ) ( )
( ) ( )∈ ≠

+ ≥ ∈
− < ∈
R
S|
T|

12
1
1
0

and and
for all
for all

otherwise
 

 
All the attributes are removed one at a time and a calculation is made of 
the similarity between the diagram developed by the full attribute set A 
and those induced by the attribute sets with only (R-1) attributes. The i-
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th attribute associated with the minimum S is the most influential one 
(i.e. the attribute that, if removed, provides the more diverse diagram). 

 
MinS(A,Ai ) i th→ − attribute more influent ial 

being: 

A r r rR= 1 2, ,.........,l q  full set of attributes 
A i i i Rr r r r= − +1 1 1,...., , ,......,l q  i-th attribute skipped 

 
The less influential attribute is then removed and the procedure repeated 
on the remaining attributes; the new full set A’ will be composed by R-1 
attributes: The diagram developed by the new full set of attributes (A’) is 
compared with those induced by the attribute sets with only (R-2) 
attributes. Thus, at any step the less influential attribute is identified and 
deleted. The procedure stops when the full set consists of only two 
attributes; thus a sequence of attribute influence is provided. An 
example will explain the procedure better: Table 2.23 shows the data of 
five elements described by four criteria.  
 

Element r1 r2 r3 r4 

a 2 4 5 34 

b 22 4 3 30 

c 34 4 33 61 

d 68 15 28 23 

e 12 65 11 22 

Table 2.23 the data matrix for sensitivity example. 
 
The similarities between the diagram from all the attribute sets and those 
obtained deleting one attribute at a time are the following: 
 
S(A, A1) = 0.95 
S(A, A2) = 0.90 
S(A, A3) = 1.00 
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S(A, A4) = 0.85 
 
The third attribute, showing the highest similarity value is the least 
influential, thus it is deleted and the procedure repeated. The new full set 
of attributes A’ is composed of attributes r1, r2 and r4. The similarities 
between the diagram developed with the new full set A’ and those 
induced by the attribute sets with only (R-2) attributes are calculated. 
 
S(A’, A’1) = 0.95 
S(A’, A’2) = 0.85 
S(A’, A’4) = 0.75 
 
being A’1 = {r2, r4} 
being A’2 = {r1, r4} 
being A’4 = {r1, r2} 
 
The first attribute showing the highest similarity value is the least 
influential, thus it is deleted. The remaining two attributes constitute the 
most influential attribute pair. Thus the following influence order arises: 
 

r r r r3 1 2 4≤ ≤ ≤  
 
Therefore, the fourth attribute together with the second, is the most 
influential on the ranking; the first follows it. The third attribute is the 
least influential. The sensitivity analysis performed on the W matrix 
confirms the obtained results (σ 1 1= ;σ 2 2= ;σ 3 0= ;σ 4 3= ). 
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2.8 Total – Partial ranking comparison 
The Partial ranking approach by the Hasse diagram technique has been 
applied to the data of twelve High Production Volume Chemicals (HPVC) 
described by production volume (PV), acute toxicity to fish (LC50), the 
partitioning coefficient between n-octanol and water (LogKow), and 
biodegradation [European Communities, 2000], previously used in 
Chapter 1 to compare total order ranking methods. The total order 
results are shown in Table 2.23. 
 

Sub. Des. Uti. Dom. Pref. ConcA ConcQ Abs R. 

 CNB 0.96 0.96 0.67 0.76 1.00 0.93 1.00 

 4NA 0.59 0.64 0.34 0.41 0.74 0.39 0.59 

 4NP 0.00 0.66 0.28 0.42 0.67 0.51 0.50 

 ATR 0.72 0.78 0.36 0.61 0.74 0.65 0.67 

 CHL 0.00 0.33 0.09 0.28 0.22 0.22 0.26 

 DIA 0.00 0.74 0.54 0.59 0.67 0.65 0.50 

 DIM 0.63 0.69 0.36 0.46 0.74 0.49 0.62 

 ETH 0.00 0.69 0.26 0.47 0.67 0.56 0.50 

 GLY 0.47 0.52 0.20 0.33 0.30 0.30 0.48 

 ISO 0.66 0.71 0.33 0.50 0.74 0.53 0.64 

 MAL 0.00 0.64 0.54 0.61 0.67 0.47 0.47 

 THI 0.70 0.76 0.55 0.57 0.74 0.61 0.66 

Table 2.23 – Rankings obtained by Desirability, Utility, Dominance, Preference 
functions, classical and quantitative Concordance Analysis, (ConcA and 
ConcQ), and Absolute reference method. 
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The obtained Hasse diagram is shown in Figure 2.23. 
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Figure 2.23 – Hasse diagram of twelve High Production Volume Chemicals. 

 
The Hasse diagram is arranged in four levels; four elements are 
identified as maximals: Malathion, Linuron, 1-Chloro-4-Nitrobenzene and 
Thiram. The 12 HPVC are separated into two groups, plus an isolated 
element. The larger group is composed by eight elements, the smaller 
by three. The elements in the large group are characterised by high 
production volume and low LogKow values, whereas the elements in the 
small group have a reverse trend. The production volume and the 
partitioning coefficient between n-octanol and water are “antagonistic” 
attributes. Malathion is an isolated element because of its singular 
behaviour, which is the lowest value of LC50 and the fastest 
biodegradation.  
Comparing the results from HDT with those from total ranking methods, 
it can be highlighted that, from among the total ranking methods, the 
Dominance approach is the one closest to HDT, being based on element 
pair comparisons. Moreover in the Hasse diagram technique the 
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elements are divided, on the basis of levels, into groups. Unlike total 
ranking methods, which are based on a subjective definition of attribute 
weights, HDT allows the estimation of the quantitative importance of the 
attributes used to perform the ranking by sensitivity analysis. The 
example above is used for sensitivity analysis performed by the W 
matrix approach: 
 

 A A1 A2 A3 A4 
A 0 9 2 9 22 
A1 9 0 11 18 31 
A2 2 11 0 11 24 
A3 9 18 11 0 31 
A4 22 31 24 31 0 

 
Where A is the full set of attributes; A1, A2, A3 and A4 are the sets with 
PV, LC50, LogKow and BD skipped; respectively. The numbers indicate 
the marked importance of biodegradation in the ranking.  
The same results were provided by backward sensitivity which, at the 
first step, selects LC50 as the least influential attribute, followed by PV 
selected at the second step. Thus, if the attribute weighting is assumed 
to be a level of subjectivity, the Hasse diagram technique can be 
considered a more scientifically based method than those of total 
ordering. 
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CHAPTER 3 
 

Ranking Models 
 
 
 
 
The previous chapters explained how to use total and partial ranking 
methods to perform data exploration, investigate the inter-relationships 
of objects and/or variables and set priorities. Moreover order ranking 
methods appear a very useful tool not only to perform data exploration 
but also to develop order ranking models, being a possible alternative to 
conventional statistical methods such as multi-linear regression (MLR) or 
classification. Mathematical models have become an extremely useful 
tool in several scientific fields like environmental monitoring, risk 
assessment, QSAR and QSPR, i.e. in the search for quantitative 
relationships between the molecular structure and the biological activity/ 
chemical properties of chemicals; moreover they are used for process 
control purposes as well as in chemical research. 
A mathematical model is an important tool that allows the synthesis of 
knowledge on an investigated system and that can be used to perform 
predictions of future events based on the model itself. A mathematical 
model can be defined as a mathematical formulation of the relationship 
between a set of dependent (or response) variables (y1, …, yR) and a 
set of independent (or explanatory) variables (x1, …, xp), which allows 
the prediction of dependent variable values from the given values of 
independent variables: 
 

( ) ( )y ,y ,...,y x ,x ,...,x1 2 1 2R pf=  
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Mathematical models can be divided into three main groups: 
1. regression models: the dependent variable, i.e. the response, is 

a quantitative variable. 
2. classification models: the dependent variable is a qualitative 

variable. 
3. ranking models: the dependent variable is an ordinal variable. 

 
Data modelling is usually performed with different purposes: 

• Description: the aim is to find the best functional relationship among 
variables in the model. In mathematics, a function y = f(x) is a rule of 
correspondence that associates a value of y to each x value.  

• Inference: the aim is to generalise the results of a set of objects to 
the whole target system. 

• Prediction: the aim is to predict response variables values from the 
model for new samples not yet experimentally investigated. 

Thus, searching for a mathematical model is a complex procedure 
articulated in four main phases: The first consists in identifying the type 
of model, i.e. in the choice of the type of model that is supposed to be 
more appropriate for the system under study and for the objectives of 
the analysis. The second phase consists in developing the model by 
removing noise from the useful information and by the real model 
parameter estimation. The third phase is validation, which consists in 
checking stability and predictive model capability. Once reliability has 
been verified the fourth phase comes into effect, the model can be used 
to predict unknown events. 
 
When data material is characterized by uncertainties, order models can 
be used as an alternative to statistical methods like multi-linear 
regression (MLR), since order models do not require a specific functional 
relationship between the independent and the dependent variables 
(responses). Moreover in several chemical and environmental problems 
the aim is to define order relations among several chemicals, to point out 
the more hazardous ones and to set priorities before taking final 
decisions. For these purposes, order ranking models, which allow the 
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finding of inter-relationships for each chemical even though no 
quantitative values are provided, can be a promising approach to 
support decision making processes.  
A ranking model is defined as a relationship between a set of dependent 
attributes, investigated experimentally, and a set of theoretically defined 
independent attributes, also called model attributes, which are calculated 
attributes:  
 

rank y y y f x x xi i i iR i i ip( ) ( )1 2 1 2, ,..., , ,...,=  

 
where f is a ranking function.A model ranking development is based on 
the following steps: 
 
1. Experimental ranking: a total or partial ranking method is applied to 

experimental attributes (dependent attributes).  

2. Model ranking: the total or partial ranking method is applied to a 
subset of selected model attributes (independent attributes). 

3. Experimental and model ranking comparison: evaluation of the 
degree of agreement between two rankings, i.e. analysis of model 
ranking reliability. 

4. Interval estimations: experimental ranking of an element is evaluated 
by the ranking model obtained. 

 
In the first phase, elements are ranked according to the experimental 
attributes describing them. If the aim is to develop a total ranking model, 
a total ranking method is selected and applied to the experimental 
attributes. In this case the result will be a totally ordered element 
sequence. On the other hand, if the aim is to develop a partial ranking 
model, the Hasse diagram technique will be applied and the result will 
be a Hasse diagram of partially ordered elements. In the second phase 
the same ranking method (total or partial), previously applied to the 
experimental attributes, is now applied to a selected subset of model 
attributes, and the elements are ranked according to the selected model 
attributes. Then, the two rankings are compared to evaluate if the model 
ranking is able to reproduce the element ranking based on the 
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experimental attributes. In this way the similarity between two totally 
ordered sequences, or two diagrams, is measured. Finally, if the 
agreement between the model ranking and the experimental ranking is 
considered satisfactory, predictions of the ranking of other elements, not 
being investigated experimentally, are performed by the ranking model. 

As in multilinear regression (MLR) methods, the selection of variables 
(attributes) is crucial to developing a reasonable ranking model. The aim 
of variable subset selection is to reach optimal model complexity in 
predicting response variables by a reduced set of independent variables 
[Hocking, 1976; Miller, 1990]. Ranking models based on the optimal 
subsets of a few predictor attributes have the great advantage of being 
more stable and showing higher predictive power. One of the simplest 
techniques for variable selection, also called “sentimental selection”, is 
based on the a priori selection of a few variables, by experience, 
tradition, availability, opportunity or knowledge. Ranking models, still 
proposed in today’s literature, are mostly based on a subjective selection 
of attributes which are supposed to reflect the chemical and physical 
features to be modelled [Carlsen et al., 1999; Carlsen, 2001; Walker and 
Carlsen, 2002; Carlsen et al., 2002a; Sørensen et al., 2003]. Another 
more mathematically based, but common, method of performing variable 
selection is the one based on an exhaustive examination of all the 
possible k variables models (the model size) obtained by a set of p 
variables. As the procedure consists in evaluating the quality of all the 
models with one variable, all the models with two variables to all 
possible models with k variables, the required computer time increases 
extraordinary when p and k are quite large. In fact, the total number of 
models t is given by the following expression: 

 

t p
k p kk

L
p= ≤ −

⋅ −=
∑ !

! ( )!1

2 1 

 

where L is the maximum user-allowed model size. The main advantage 
of this method is the exhaustive search for the best ranking model in the 
model space. However in many multivariate applications elements are 
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described by too many variables. This happens either because the 
researcher does not know a priori which variables are relevant to the 
study on hand (and as many as possible are measured to make sure all 
the important ones are included), or because the experiment is very 
costly and difficult to organize (and the researcher measures as many 
variables as possible in case the opportunity to repeat the experiments 
does not present itself again), or, finally, because the variables are 
calculated variables. When many variables are available, relevant 
information should be separated from redundant and noisy information. 
Moreover, when many variables are available, an exhaustive 
examination of all possible models is not feasible as, given the extremely 
high number of possible attribute combinations, it requires extensive 
computational resources and is time consuming. In such cases a 
variable selection technique is needed. The Genetic Algorithm (GA-VSS) 
approach is proposed here as the variable selection method to search 
for the best ranking models within a wide set of variables.  
3.1 GA-VSS applied to ranking models 
Genetic algorithms (GA) are an evolutionary method used widely for 
complex optimisation problems in several fields such as robotics, 
chemistry and QSAR [Goldberg, 1989; Wehrens and Buydens, 1998]. A 
specific application of GA is variable subset selection (GA-VSS) [Leardi, 
et al., 1992; Leardi, 1994; Luke, 1994; Leardi, 1996; Todeschini et al., 
2003]. Since complex systems are described by several variables, a 
major goal in system analysis is the extraction of relevant information, 
together with the exclusion of redundant and noisy information. A special 
application of Genetic algorithms is variable selection for modelling 
purposes. Variable selection is performed by GAs by considering 
populations of models generated through a reproduction process and 
optimised according to a defined objective function related to model 
quality. The procedure is based on the evolution of a population of 
models, i.e. a set of ranked models according to some objective 
function. In genetic algorithm terminology each individual population is 
called chromosome and is a p-dimensional binary vector I, where each 
position (a gene) corresponds to a variable (1 if included in the model, 0 
otherwise).  
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0      1      1      0      0

chromosome

x1    x2 x3 x4    x5 

variable

gene present
in the model

not present 
in the model

0      1      1      0      0

chromosome

x1    x2 x3 x4    x5 

variable

gene present
in the model

not present 
in the model

 
 

Each chromosome represents a model given by a subset of variables. 
The objective function to be optimised must be defined along with the 
model population size P and the maximum number L of allowed 
variables in a model; the minimum number of allowed variables is 
usually assumed equal to one. Moreover, crossover probability and 
mutation probability are to be defined. The genetic algorithm procedure 
is illustrated in Figure 3.1. 
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START Random initialization 
of the population

EVOLUTION 

Reproduction

Mutation

Population

1. Chrom1 resp.1
2. Chrom2 resp.2
3. Chrom3 resp.3

……………………….
……………………….
……………………….
P. ChromP resp.P

STOP

START Random initialization 
of the population

EVOLUTION 

Reproduction

Mutation

Population

1. Chrom1 resp.1
2. Chrom2 resp.2
3. Chrom3 resp.3

……………………….
……………………….
……………………….
P. ChromP resp.P

STOP

 

Figure 3.1 – Genetic algorithm procedure. 
 
Once the leading parameters are defined the genetic algorithm evolution 
starts, based on three main steps: 
 
1. Random initialisation of the population 
The model population is built initially by random models with a number of 
variables between 1 and L. The value of the selected objective function 
of each model is calculated in a process called evaluation. The models 
are then ordered with respect to the selected objective function – model 
quality - (the best model is placed first in the population, the worst at 
position P). 
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2. Crossover  
From the actual population, pairs of models are selected to be used as 
parents. Parent selection can be performed randomly, if no account is 
taken of quality, or by the so-called roulette wheel (RW) which is biased 
towards the best individuals, the chance of an individual being selected 
being a function of its quality (or rank). In this case the concept of quality 
survival comes into play by applying selection pressure. Additional 
pressure can be introduced by using the roulette wheel operator several 
times to produce a tournament selection of a subset of individuals: the 
best individual is then chosen as the selected parent. Then, from each 
pair of selected models (parents), new individuals (offspring) are 
generated, preserving the common characteristics of the parents (i.e. 
variables excluded in both models remain excluded, variables included 
in both models remain included) and mixing the opposite characteristics 
according to the crossover probability. Let Parent 1 and Parent 2 be the 
selected parents: 
 

Parent 1: 0 1 0 0 1 1 0 0 

Parent 2: 0 1 1 0 0 1 0 0 

 

Each offspring derived from these two parents will preserve their 
common genetic part, being a chromosome like 0 1 ? 0 ? 1 0 0. 
Offspring generation is performed using one parent at a time and 
analysing its changeable genes by comparing a random number with the 
crossover probability (unbiased uniform crossover). For each variable 
included in one parent but not in the other, a number is extracted 
randomly and compared with the crossover probability: if this randomly 
selected number is lower than the crossover probability then the variable 
is included if not present in the parent (0 → 1), or excluded if present in 
the parent (1 → 0), otherwise it remains unchanged. If the generated son 
coincides with one of the individuals already present in the actual 
population, it is rejected; otherwise, it is evaluated. If the objective 
function value is better than the worst value in the population, the model 
is included in the population, in the place corresponding to its rank; 
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otherwise, it is no longer considered. This iterative procedure is repeated 
for several pairs. 
 
3. Mutation  
After a number of crossover iterations, the population proceeds through 
the mutation process. Mutation is a mechanism that produces, by a 
completely random process, new genetic material during population 
evolution. For each individual present in the population, p random 
numbers are tried, p being the number of individual genes, and each is 
compared, one at a time, with the defined mutation probability: each 
gene remains unchanged if the corresponding random number exceeds 
the mutation probability, otherwise, it is changed from zero to one or 
viceversa. Low values of mutation probability allow only a few mutations, 
resulting in new chromosomes not too different from the generating 
chromosomes. 
 
4. Stop conditions 
The second and third steps are repeated until some stop condition is 
encountered (e.g., a user-defined maximum number of iterations) or the 
process is arbitrarily ended. The models based on the selected subset of 
attributes are tested and evaluated by optimisation parameters, i.e. 
indices that quantify the agreement of the model ranking with the 
experimental ranking. 
 
It is to be highlighted that the GA-VSS method provides not a single 
model but a population of acceptable models; this characteristic, 
sometimes considered a disadvantage, makes the evaluation of variable 
relationships with response from different points of view possible. 
Moreover, when variable subset selection is applied to a huge number of 
variables, the genetic strategy can be extended to more than one 
population, each based on different variable subsets, evolving from each 
other independently. In this case, after a number of iterations, these 
populations can be combined according to different criteria, obtaining a 
new population with different evolutionary capabilities [Todeschini et al., 
2003]. 
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3.2 Optimisation parameters 
Variable subset selection is performed by GAs optimising populations of 
models according to a defined objective function related to model 
quality. In ranking models objective function is an expression of the 
degree of agreement between the element ranking resulting from 
experimental attributes and that provided by the selected subset of 
model attributes. To measure the agreement of two rankings they have 
to be compared: in the case of a total ranking model two totally ordered 
element sequences are brought into comparison, while in a partial 
ranking model the comparison is performed between two Hasse 
diagrams. The total and partial ranking models are evaluated by different 
objective functions. 
 
 
3.2.1 Total ranking optimisation parameters 

To develop a total ranking model, a total order ranking method is first 
applied to the experimental attributes y1, …, yR, defining an experimental 
ranking parameter, Γexp. According to the experimental parameter, a 
specific experimental rank is associated to each i-th element: 
 

Γ i i i iR if y y y rankexp exp( , ,... )≡ →1 2  
 
Then the total order ranking method is applied to the model attributes x1, 
…, xp, defining a model ranking parameter, Γmod and according to that, a 
model rank is associated to each i-th element: 
 

Γ i i i ip if x x x rankmod mod( , ,... )≡ →1 2  

 
The correlation between the two ranking parameters (Γexp,  Γmod) can 
then be evaluated by Spearman’s rank correlation coefficient, according 
to the following expression: 
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where di is the rank difference for the element i in the two rankings and 
N is the total number of elements.  
The correlation between experimental and model rankings can also be 
evaluated by Kendall’s rank correlation coefficient τ. These indices can 
be used as optimisation parameters in a genetic evolution algorithm to 
quantify the correlation, i.e. the similarity, between the total experimental 
ranking, for example a desirability function Dexp and the total model 
ranking, a desirability function Dmod .  
Figure 3.2 shows the procedure used to compare the total experimental 
ranking and the total model ranking. 
 

experimental ranking model ranking

y1   y2 …  yR x1   x2 … xp

Spearman’s (Kendall’s) rank correlation

Gexp Gmod

experimental ranking model ranking

y1   y2 …  yR x1   x2 … xp

Spearman’s (Kendall’s) rank correlation

Gexp Gmod

 

Figure 3.2 – Scheme of the procedure used for the comparison of the total 
experimental ranking with the total model ranking. 
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3.2.2 Partial ranking optimisation parameters 

According to the procedure described above, once the experimental 
ranking has been developed, for each subset of selected model 
attributes the agreement degree between the two corresponding 
diagrams is evaluated. For the same N elements the correlation between 
the experimental partial ranking and the model ranking (denoted as E 
and M, respectively) can be evaluated by a set of similarity measures, 
called Tanimoto indices [Rogers and Tanimoto 1960; Brüggemann et al., 
1995b; Bath et al., 1993; Moock et al., 1998; Sørensen et al., 2003] T(IE, 
IM) defined as: 
 

T I I E M
E M

sr

sr rr I ir I irE M
E M

( , ) =
∩
∪

=
+ + +

∑
∑∑∑∑

 

 

where IE and IM are weights which can take the value either 0 or 1, and 
the denominator terms are defined as follows: 
 

sr∑ : sum of element pairs with y y j Esj tj< ∀ ∈  and x x j Msj tj< ∀ ∈  

“same ranking” 

rr∑ :  sum of element pairs with y y j Esj tj< ∀ ∈  and x x j Msj tj> ∀ ∈  

“reverse ranking” 

ir
E∑ :  sum of elements pairs with y y j Esj tj≤ ∀ ∈  and x x j Msj tj ∀ ∈  

“incomplete ranking in E” 

ir
M∑ :  sum of pairs with y y j Esj tj ∀ ∈  and x x j Msj tj≤ ∀ ∈  “incomplete 

ranking in M” 

 
where s t N, , ,...,∈12  and s t≠ . 
 
Depending on the specific correlation problem it is not always relevant to 
use ir

E∑  and/or ir
E∑  in Tanimoto index calculation. 
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Thus, each Tanimoto index can be used as the measure of “goodness of 
fit” (degree of agreement) as it is the ratio of the number of agreements, 
i.e. the number of the same mutual rank of two elements identified in the 
model and in the experimental ranking, over the number of 
disagreements, i.e. contradictions in the ranking of two elements in the 
model and experimental ranking. The most severe similarity measure is 
IE = 1 and IM =1. 
The Tanimoto indices, being similarity indices, range from 0, when no 
similarity exists between the two rankings and, thus, no element has the 
same mutual rank, to 1, when the two rankings are totally similar, i.e. all 
the elements have the same mutual rank and no contradiction exists. 
A numerical example of the Tanimoto indices calculation is illustrated 
here, see the two diagrams shown in Figure 3.3. 
 

 

Experimental ranking 

 

a

b

c

d

fe

a

b

c

d

fe

a

b

c

d

fe

a

b

c

d

fe

 

 

 

Model ranking 

 

a

b  c

d

e

f

a

b  c

d

e

f

 

 

Figure 3.3 – Experimental and model ranking comparison. 
 
Number of reverse rankings ( rr∑ ) = 2  {CE, DE} 

Number of same rankings ( sr∑ ) = 9  {AB, AC, AD, AE, AF, BC, BD, 

CD, DF} 
Number of incomplete rankings in E ( ir

E∑ ) = 1  {CF} 
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Number of incomplete rankings in M ( ir
M∑ ) = 2  {BE, EF} 

 
Thus, the Tanimoto indices are: 
 

T E M
E M

sr

sr rr
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9 2
0 82=

∩
∪

=
+

=
+
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T E M
E M

sr

sr rr ir
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∩
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T E M
E M

sr

sr rr ir ir
( , ) .11 9

9 2 2 1
0 64=

∩
∪

=
+ + +

=
+ + +

=∑
∑∑∑∑

 

 
In searching for ranking models, optimising the Tanimoto index T(0,0) 
has been demonstrated to be overoptimistic and not able to give optimal 
models. In fact, the selected models often turned out to be quite unlike 
the experimental model as this index in the model discloses only the 
percentage of rankings, which can be again found in the experimental 
ranking. The Tanimoto indices T(0,1) are more severe than T(0,0), as 
the denominator even takes into account the dissimilarity due to element 
pairs that, being incomparable in the experimental ranking, become 
comparable in the model ranking. As far as concerns the Tanimoto 
indices T(1,1), it is to be highlighted that this is the most severe case as 
the denominator accounts for both dissimilarities; this is due to element 
pairs that, being incomparable in the experimental ranking, become 
comparable in the model ranking and viceversa. However, as the 
numerator factor only accounts for rankings, i.e. comparabilities, but 
ignores similarity due to incomparabilities, it turns out to be over 
pessimistic. 

To have a more realistic measure of the agreement between two partial 
rankings a similarity index is proposed. It is calculated comparing the 
experimental and model Hasse matrices, denoted E and M respectively, 
according to the following expression: 
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where: 
hst is the entry of the Hasse matrix for each pair of elements s and t and 

s t N s t h
if y s y t y IB
if y s y t y IBst

r r r

r r r, , ,...,
( ) ( )
( ) ( )∈ ≠

+ ≥ ∈

− < ∈
R
S|
T|

12
1
1
0

and and
for all
for all

otherwise
 

 
S(E,M), being a similarity index, ranges from 0 (no similarity) to 1 
(complete similarity) and expresses the differences between the two 
compared matrices; if two elements (s and t) have the same mutual rank 
in both rankings, their contribution is 0. Thus it can be forecast that if two 
elements (s and t) have different ranks, but not opposite ones, in the two 
rankings ( hst

E = ±1 and hst
M = 0 , or hst

E = 0 and hst
M = ±1), then their 

contribution is 1, while if the mutual ranks are opposite ( hst
E = +1 and 

hst
M = −1, or hst

E = −1 and hst
M = +1), their contribution is 2. In this way the 

discrepancies due to opposite mutual rankings are evaluated more 
deeply than those due to comparable element pairs that have become 
incomparable, and viceversa. 
A numerical example of the similarity index calculation is provided for the 
two diagrams shown in Figure 3.4. 
To allow easy calculation of the similarity index, the experimental and 
model Hasse matrices are displayed here: the discrepancies are 
highlighted in bold. The order relations between element b and f is 
opposite in the two rankings, as b covers f in the experimental ranking, 
while it is covered in the model ranking. Moreover the model is not able 
to reproduce the order relations between c and e and d and e; they are 
incomparable elements, as their order relations have not been solved. 
 
 
 
 
 



Optimisation parameters 
 

133 

 Experimental ranking  Model ranking 
 a b c d e f   a b c d e f 

a - 1 1 1 1 1  a - 1 1 1 1 1 
b -1 - 1 1 0 1  b -1 - 1 1 0 -1 
c -1 -1 - 1 -1 -1  c -1 -1 - 1 0 -1 
d -1 -1 -1 - -1 -1  d -1 -1 -1 - 0 -1 
e -1 0 1 1 - 0  e -1 0 0 0 - 0 
f -1 -1 1 1 0 -  f -1 1 1 1 0 - 
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Figure 3.4 – Experimental and model ranking comparison. 
 
The similarity index is: 
 

S( , ) .E M = − = − =+ + + + +
⋅ ⋅

1 12 1 1 1 1 2
2 6 5

8
60

0 87  

 
The Tanimoto indices for the example above take the following values: 
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Thus, the “goodness of fitting” of the partial ranking model of Figure 3.4 
calculated by the similarity index is lower than that calculated by both 
T(0,0) but higher than the one by T(1,1), suggesting that the similarity 
index could be a more reasonable compromise between the over 
optimistic over pessimistic evaluation provided by T(0,0) and T(1,1) 
respectively, then the T(0,1) index, which not necessary provides a 
diverse result with respect to T(0,0). 
 
 
3.3 Ranking predictions 

Once the “goodness of fitting” of the model ranking has been verified by 
either Spearman’s rank index for total ranking or the similarity index (or 
Tanimoto indices) for partial ranking, predictions can be performed for 
new elements. The experimental ranking of new compounds that have 
not yet been investigated experimentally can be predicted by the ranking 
model. Since total ranking can be assumed as a particular case of partial 
ranking, the proposed prediction procedure is here described for a more 
general partial ranking. 

From the set of model attributes {xu1,…, xup} describing any unknown 
element u, prediction of the experimental ranking of element u can be 
performed on the basis of the training set elements: 

 
x ,...,x ranku1 up urn s training set →  
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To explain ranking predictions, a directed connectivity operator C is 
introduced. This operator is defined for element pairs of digraphs 
(directed graphs) to which Hasse belongs. Interpreting the Hasse 
diagram as a digraph, it consists of a set of N vertices (circles 
representing elements) and a set of oriented edges each connecting two 
vertices. No path exists between incomparable elements. 
Being s and t two diverse elements in a Hasse diagram (HD), and N the 
set of integer numbers, then the connectivity operator C(s,t) is defined 
as follows: 

if s,t H s t C(s,t) N∈ ≠ → ∈and  
 

C(s,t) N

C(s,t) N
C(s,t) 0

+

-

∈

∈

=

iff s covers t
iff t covers s

iff s t
 

 
The operator C(s,t) has the following properties: 
 
• C(s,t) k 0 k L -1= ≤ ≤  

• C(s,t) C(t,s)= −  Æ antisymmetry 

• C(s,t) p=  and C(t,z) q= fiC(s,z) p q if p,q > 0= + Æ transitivity 

 
k being the absolute value of the path length between the two elements 
s and t , and L the number of levels in the Hasse diagram. 
According to the first property, the operator is an integer number, taking 
a value equal to the path length between s to t. If s covers t, and is 
located in the level immediately above t then C(s,t) takes a value equal 
to 1. The maximum length of a Hasse diagram, i.e. the maximum 
number of lines in the longest chain, is equal to L-1, L being the number 
of HD levels. If no path exists between s and t, meaning that s and t are 
incomparable ( s t ), then C(s,t) equals 0. Reflecting the ranking order 

relation properties, the connectivity operator has antisymmetry and 
transitivity properties. 
As the connectivity operator is a key element to performing ranking 
prediction, an example is illustrated in Figure 3.5. 
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C (a,b) = 0

C (a,d) = 1

C (d,a) = -1

C (a,c) = 2
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C (e,g) = 1

C (a,g) = 4

 

Figure 3.5 – Connectivity operator values for Hasse diagram. 
 
The connectivity operator C(a,b) on elements a and b of the Hasse 
diagram in Figure 3.5 takes a value equal to 0, as the elements are not 
connected: no line exists between them as they are incomparable. For 
the same reason C(f,g) = 0, C(f,h) = 0, C(g,h) = 0. Elements a and d are 
comparable, and thus connected by a path with an absolute value of 
length equal to 1. Moreover, according to the antisymmetry property 
C(a,d) = 1, as a covers d, whereas C(d,a) = -1, as d is covered by a. 
Elements a and e are connected by a path length equal to 3. According 
to the transitivity property, as C(a,e) = 3 and C(e,g) = 1, C(a,g) = 4. It 
can be observed that for the Hasse diagram of Figure 3.5 the maximum 
value of the path length is 5 (= L - 1).  
Moreover, for totally ordered ranking the connectivity operator does not 
take a value equal to 0, as all the objects are comparable and no 
incomparability exists among them. 
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Thus, through the connectivity operator, the predictions of the 
experimental ranking of any unknown element u can be performed 
looking for the two elements s and t which satisfy the following 
conditions: 
 

min C(s,u) min C(u,t) min[(y y )]s t s t> 0 > 0 > 0∧ ∧ −  
 
Thus, for any unknown element u, a search is performed for the two 
elements s and t which are connected (comparable) to u, i.e. C(s,u) > 0 
(with s above u) and C (u,t) > 0 (with u above t), located on the shortest 
path, and which experimental difference value constitutes the smallest 
positive interval. Moreover, C(s,u) represents the u-above rank radius 
and C (u,t) the u-below rank radius, whereas C (s,t) is the u rank 
diameter. 
Figure 3.6 summarizes the procedure used to perform partial ranking 
predictions. In a first step, a partial order ranking method like the Hasse 
diagram is applied on the experimental attributes y1, …, yR of the N 
training set elements; in the second step the Hasse diagram is 
developed on the selected model attributes x1, …, xp. Once agreement 
between the two rankings has been verified, the model is used to 
perform predictions of the experimental ranking of a new element u, not 
yet tested experimentally. 
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Figure 3.6 – Scheme of the procedure used for partial ranking predictions. 

 
A numerical example is provided here to better explain the prediction 
calculation. For the sake of simplicity, let us consider an experimental 
ranking developed on two experimental attributes y1 and y2; Table 3.1 
shows their numerical values. The corresponding experimental Hasse 
diagram is shown in Figure 3.7 
 

Element y1 y2 

a 180 400 
b 150 420 
c 130 240 
d 140 270 
e 90 190 
f 100 230 
g 120 200 
h 90 235 
i 82 88 

Table3.1 – Numerical values of the experimental attributes. 
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Figure 3.7 –Experimental Hasse diagram. 
 
Let us suppose the Hasse diagram in Figure 3.7 to be the ranking model 
developed on the training set composed by 9 elements {a, b, c, d, e, f, g, 
h, i}; having verified the model’s agreement with the experimental 
ranking (S(E,M) = 0.92; T(0,0) = T(0,1) = T(1,1) = 0.91) the set of model 
attributes {xu1,…, xup} describing the unknown element u can, on the 
basis of the training set elements, perform the prediction of the 
experimental ranking of u: 
 

x ,...,x ranku1 up
TS

un s  →  

 
Figure 3.8 shows the model ranking projection of the new unknown 
element u in the model ranking diagram. 
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Figure 3.8 –Projection of the unknown element u in the model ranking diagram. 
 
To predict the experimental values of the unknown element u, a search 
is made for the element pair located on the shortest path from u and with 
an experimental value difference that constitutes the smallest positive 
interval. 
Firstly, an examination is made of the elements comparable to u and 
located on a path length equal to 1. The experimental values y1 and y2 of 
elements e, f, g and h are taken into account and the differences 
between e (located above u) and f, g and h (located below u) are 
investigated. 
As far as concerns the experimental attribute y1, the model provides the 
following intervals: 
 
y ye1 f1− = − = −90 100 10  
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y ye1 g1− = − = −90 120 30  
y ye1 h1− = − =90 90 0  

 
All three intervals are rejected as they are not positive interval. Thus the 
elements located on a path length equal to 2 are examined. The 
elements c and i are considered and the following intervals examined: 
 
y yc1 f1− = − =130 100 30  

y yc1 g1− = − =130 120 10  

y yc1 h1− = − =130 90 0  

y ye1 i1− = − =90 82 8  

y yc1 i1− = − =130 82 48  

 
The smallest positive interval for y1 is the one provided by elements e 
and i, thus the experimental value y1 of the unknown element u is 
predicted as: 
 

y y y yi1 u1 e1 u1≤ ≤ ⇒ ≤ ≤82 90  

 
It can be observed that element e and i satisfy all the conditions required 
to perform a ranking prediction, i.e.: 
 

C(e,u) C(u,i) min[(y y )]e i= 1 (> 0) = 2 (> 0) = 8 (> 0)∧ ∧ −  
 

In the same way the following intervals are provided for y2: 
 
y ye2 f 2− = − = −190 230 40  
y ye2 g 2− = − = −190 200 10  
y ye2 h2− = − =190 135 -45  

 
All the three intervals are rejected, and again the intervals provided by 
elements c and i located at a length path equal to 2 are examined: 
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y yc2 f 2− = − =240 130 10  
y yc2 g 2− = − =240 200 40  
y yc2 h2− = − =240 235 5  

y ye2 i 2− = − =190 88 102  

y yc2 2 i− = − =240 88 152  

 
The smallest positive interval for y2 is the one provided by elements c 
and h, thus the experimental value y2 of the unknown element u is 
predicted as: 
 

y y y yh2 u 2 c2 u 2≤ ≤ ⇒ ≤ ≤235 240  

 
Elements c and h satisfy all the conditions required to perform a ranking 
prediction, i.e.: 
 

C(c,u) C(u,h) min[(y y )]c h= 2 (> 0) = 1 (> 0) = 5 (> 0)∧ ∧ −  
 

According to the position of the unknown element u in the model 
ranking, four different cases can be identified, each characterized by 
specific prediction: 
 
1. u is located in a chain →  y y ytr ur sr≤ ≤  
2. u is a minimal   →  y yur sr≤  
3. u is a maximal →  y ytr ur≤  
4. u is isolated →  yur = ?  
 
s and t being two elements in HD respectively located above and below 
u. In particular, for case 2, being u a minimal, its rank is predicted to be 
smaller than the lowest value of the comparable elements ranked above; 
thus, the rule is the following: 
 

C(s,u) min ys s= 1 ∧ b g  
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which means that the estimated interval of u is open on the left and only 
the first shell of neighbourhoods above is taken into account. If, for the 
example above, the unknown element u is a minimal (Figure 3.9), then 
its predicted ranks will be: 
 

y y yu1 i1 u1≤ ⇒ ≤ 82  

 
y y yu2 i2 u2≤ ⇒ ≤ 88  

 

a b
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e

u

f g h

i

 

Figure 3.9 – Projection of the unknown element u in the model ranking diagram. 
 

Moreover, for case 3 where u is a maximal, there is no comparable 
element above, and its rank is predicted to be larger than the highest 
value of the comparable elements ranked below; thus, the rule is: 
 

C(u,t) max yt t= 1 ∧ b g  
 



Ranking models 

144 

which means that the estimated interval of u is open on the right and 
only the first shell of neighbourhoods below is taken into account. 
For the example described above, if the unknown element u is a 
maximal (Figure 3.10) then its predicted ranks will be: 
 

y y ya1 u1 u1≤ ⇒ ≤180  

 
y y yb2 u2 u2≤ ⇒ ≤420  
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Figure 3.10 – Projection of the unknown element u in the model ranking 
diagram. 

 
In the last case u is an isolated element, i.e. it is not comparable with 
any of the elements of the training set, thus its rank cannot be predicted 
by the model ranking developed. 
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As mentioned above, total ranking can be assumed to be a particular 
case of partial ranking. Thus the procedure described for partial ranking 
predictions can be used in the same way for total ranking predictions. A 
numerical example is provided here. Let us consider the experimental 
ranking developed on the two experimental attributes y1 and y2, of Table 
3.1. Assuming the two attributes of equal importance, the experimental 
total ranking provided by the desirability function is illustrated in Table 
3.2. Elements are sorted according to decreasing desirability. 
 

Element Dexp 

a 0.969 
b 0.833 
d 0.570 
c 0.474 
g 0.362 
f 0.280 
h 0.190 
e 0.158 
i 0.000 

Table 3.2 – Numerical values of the total experimental ranking. 
 
Suppose that the Desirability method applied on a selected subset of 
model attributes provides the ranking shown in Table3.3. Having verified 
the good agreement between the experimental and model rankings 
( rexp mod− = 0.90 ), the unknown element u is projected in the model 

ranking and, according to its model attributes, is ranked below e and 
above g. 
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Element Dmod 

a 0.969 
b 0.833 
d 0.570 
c 0.474 
e 0.441 
u 0.436 
g 0.362 
f 0.280 
h 0.190 
i 0.000 

Table 3.3 – Numerical values of the model experimental ranking. 
 
Firstly elements comparable to u and located on a path length equal to 1 
are examined. The experimental desirability values of elements e and g 
are taken into account and the differences between e (located above u) 
and g (located below u) are investigated. 
The interval provided by the model is: 
 
D De

exp
g
exp− = − = −0.158 0.362 0.204  

 
This interval is rejected, as it is not a positive interval. Thus the elements 
located on a path length equal to 2 are examined. Elements c and f are 
considered and the following intervals examined: 
 
 
D Dc

exp
g
exp− = − =0.474 0.362 0.112  

D De
exp

f
exp− = − = −0.158 0.280 0.122  

D Dc
exp

f
exp− = − =0.474 0.280 0.194  
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The second interval is rejected again as not being positive. The smallest 
positive interval is the one provided by elements c and g, thus the 
experimental desirability value of the unknown element u is predicted as: 
 

D D D Dg
exp

u
exp

c
exp

u
exp≤ ≤ ⇒ ≤ ≤0.362 0.474  

 
It can be seen that elements c and g satisfy all the conditions required to 
perform a ranking prediction, i.e.: 
 
C(c,u) C(u,g) min[(D D )]c

exp
g
exp= = =2  (> 0) 1 (> 0) 0.112  (> 0)∧ ∧ −

 
 
3.3.1 Ranking predictions by arithmetic mean values 

According to the approach proposed in the literature [Carlsen et. al, 
1999, 2001, 2002a; 2002b; Walker and Carlsen 2002], the prediction of 
experimental values of new elements, not yet investigated 
experimentally, can be derived as simple arithmetic means between the 
elements ranked above and below. This ranking prediction procedure is 
summarised briefly in the following. Partial order models predict only for 
elements within the “ordering net”, those elements respectively located 
in the top (maximals) and bottom (minimals) layers cannot be predicted. 
The predicted values for a given element u (Value u) are obtained by 
simple arithmetic means between the lowest value of the comparable 
elements ordered above u (minAbove) and the highest value of the 
comparable elements ordered below u (maxBelow). 
 

Value u Above Below
=

+(min max )
2

 

 
The uncertainty of the value u is equally distributed in the interval 
± −0 5. min maxAbove Below , thus the predicted value u is calculated as: 

 

Value u Above Below Above Below=
+

± −
(min max ) . min max

2
0 5  
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The approach has two main drawbacks: the first is that it is based on 
strong extrapolation, as the ranking model is used to derive not a 
ranking but a quantitative value. The second is that no check is 
performed on the interval consistency of the two elements selected as 
minAbove and maxBelow. To better explain this latter point, the 
prediction procedure is applied to the numerical partial ranking example 
discussed above (Table 3.1, Figures 3.7 and 3.8). Thus the predicted 
experimental value y1 for the unknown element u would be: 
 
 

y
y y

y yu 1
e1 g1

e1 g1=
+

± − =
+

± − = ±
( )

2
0.5 (90 120)

2
0.5 90 120 105 15  

 
whereas the experimental range values of y1, predicted by the approach 
here proposed was: 
 

y y y yi1 u1 e1 u1≤ ≤ ⇒ ≤ ≤82 90  

 
In this case the elements e and g were selected to predict the 
experimental value of the unknown element u, but experimental values 
do not provide a real interval and the procedure does not take this into 
account, meaning that the e and g ranking established by the model was 
inverted with respect to the experimental ranking. In fact, according to 
the experimental ranking, g covers e, while for model ranking e covers g. 
For this reason they should not be used to perform prediction of the 
experimental values of u. In the same way, the predicted experimental 
value y2 would be: 
 

y
y y

y yu 2
e 2 h 2

e 2 h 2=
+

± − =
+

± − = ±
( )

2
0.5 (190 235)

2
0.5190 235 212.5 22.5

 
whereas the experimental range of the y2 values, predicted by the 
proposed approach, was: 
 

y y y yh2 u 2 c2 u 2≤ ≤ ⇒ ≤ ≤235 240  
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3.3.2 Prediction uncertainty 

According to the proposed prediction calculation procedure, it is clear 
that the actual distance between the two elements s and t, which 
satisfies the prediction conditions for any unknown element u, is crucial, 
and the larger the distance the larger the potential uncertainty in the 
prediction. Thus a first topological measure of the prediction precision is 
provided by the length path between s and t, that is C(s,t): the precision 
decreases for increased C(s,t). Moreover, 

1 1≤ ≤ −C(s,u) L    and   1 1≤ ≤ −C(u,t) L  

a normalised distance measure for each prediction from the upper and 
lower limits of the interval can be evaluated according to the expression: 
 

D C(s,u) 1
L 2

0 D 1u
sup

u
sup=

−
−

≤ ≤  

 

D C(u,t) 1
L 2

0 D 1u
inf

u
inf=

−
−

≤ ≤  

 
s and t being the two elements which, satisfying the prediction 
conditions, are selected to predict the experimental interval of the 
unknown element u. Du

sup  and Du
inf  give a measure of the normalised 

rank uncertainty, above and below respectively. 
Note that if u is a maximal element C(s,u) is not defined, as no 
comparable element exists above u, thus Du

sup  is not defined and only 
Du

inf  can be evaluated. Analogously, if u is a minimal element C(t,u) is 
not defined as no comparable element exists below u, thus Du

inf  is not 
defined and only Du

sup  can be evaluated. 
Another way to measure prediction uncertainty is to evaluate the 
experimental interval width of the prediction on the r-th experimental 
attribute: 
 

Ry
y y

max min
Ryu r

s r t r

y y
u r

r r

=
−

−
≤ ≤0 1 
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where ys r  and yt r  are the experimental values of s and t for the r-th 
attribute respectively, and maxyr

 and minyr
 the maximum and minimum 

values of the r-th attribute. 
The greater the width, the greater the uncertainty. For maximal and 
minimal elements Ryur is not defined as their estimated interval is an 
open interval.  
Therefore, Du

sup  and Du
inf  measure the normalised rank uncertainty of the 

estimated interval, above and below respectively, whereas Ryur 
measures the experimental uncertainty. 
 
 
3.3.3 Hasse diagram evaluation 

Further verification of model ranking applicability can be obtained by 
applying the above described ranking prediction procedure to the 
training set elements used initially to develop the model. This results in 
the creation of a number of modified data sets from which the elements 
will be deleted from the data one by one. For each reduced data set the 
model is calculated, and from this model the interval values for the 
deleted elements are calculated. The calculated intervals are compared 
to the corresponding, experimentally derived, intervals. 
For each element of the training set the experimentally derived intervals 
are calculated by deleting it from the experimental ranking diagram; the 
remaining training set elements are then used to calculate the 
experimental intervals of the deleted element from the experimental 
ranking diagram. 
In the same way, the model calculated intervals are obtained by deleting 
one element at a time from the model ranking diagram, and using the 
remaining training set elements to calculate the model intervals of the 
deleted element from the model ranking diagram. Once having obtained 
the experimentally derived intervals and the calculated intervals, they 
are compared to establish the model ranking quality.  
On comparing two intervals, six different cases, illustrated in Figure 3.11, 
can be identified. As A and B are respectively the lower and upper 
values of the experimental interval, and C and D those of the model 
interval, Cases 1 and 2 represent disjoint intervals; Cases 5 and 6 
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intervals contained one in the other, and Cases 3 and 4 partially 
overlapped intervals. 
 

A B

C D

[1]

C D

A B

[2]

A B

C D

[3] [4]

A B

C D

[5]

A B

C D

[6]

C D

A B

 

Figure 3.11 – Interval comparison. 
 

Analysing one experimental attribute at a time, for each i-th element the 
disagreement δ i r  between its experimentally derived interval (A-B) and 

its model calculated interval (C-D) on the r-th attribute is calculated: 
 
• Case 1: δ i r = −D A  

• Case 2: δ i r = −B C  

• Case 3, 4, 5, 6: δ i r = − + −C A D B  



Ranking models 

152 

A standardised interval disagreement for the i-th element on the r-th 
attribute is then derived as: 

δ
δ

i r
* i r

y ymax min
r r

=
−

 

 
maxyr

 and minyr
 being the maximum and minimum values of the r-th 

attribute respectively. 
The average disagreement between the experimental and the model 
calculated intervals is then calculated: 
 

δ
δ

r

i r
*

i 1

N

N
= =

∑
 

 
and a measure of the ranking model quality, as far as concerns the r-th 
attribute is calculated as: 
 

Qr r= −1 δ  
 
A rougher evaluation of ranking quality can be derived from the non-
error rate of the model (NER), defined as the ratio of the number of 
intervals correctly calculated by the model out of the total number of 
intervals, according to the following expression: 
 

NER C
Nr

r=  

 
Cr being the total number of intervals for the r-th attribute, where 
C D≤ ≤yi r , and N the total number of intervals. 

Note that isolated elements for which the interval is not calculable are 
considered errors. 

The overall ranking model quality, i.e. taking into account all the R 
responses, can be evaluated by the following expressions: 
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Q
Q

R

r
r 1

R

T = =
∑

   Q Q Q1 R
R

G = ⋅ ⋅...   Q min Qr rM = l q  
 

NER
NER

R

r
r 1

R

T = =
∑

 NER NER ...NER1 R
R

G = ⋅ ⋅    NER min NERr rM = l q  
 

QT and NERT being, respectively, the arithmetic mean of all the R 
attributes of the ranking model qualities and no-error rates, they are 
represent the least demanding parameters for evaluating overall model 
ranking quality. Instead the geometric means QG and NERG are more 
severe parameters, able to enhance models not able to reproduce a 
correct experimental ranking for only a few attributes. The most 
demanding evaluation parameters of model quality are QM and NERM, 

these assuming minimum quality among the R calculated as the 
representing overall model quality.  

This procedure for evaluating model ranking quality is based on ranking 
interval comparison, provided by the Hasse diagram developed on the 
experimental attributes and calculated intervals of the diagram 
developed on model attributes. Moreover, as the metric scale is usually 
seen as a “stronger” property than the ordinal scale, it is of interest to 
measure the loss of information due the replacement of the original 
“quantitative” information with rank orders. Thus, assuming the 
quantitative experimental values as intervals with equal lower and upper 
values, i.e. E = F, they are compared with the experimentally derived 
intervals (A-B), and for each r-th attribute the standardised interval 
disagreement 0

i r
*δ is calculated the same way, as described above. 

The average disagreement between the quantitative experimental 
values and their derived intervals on the r-th attribute is calculated as: 
 

~
δ

δ

r

0
i r
*

i 1

N

N
= =

∑
 

⋅⋅
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The arithmetic mean calculated on all the R experimental attributes 
provides a measure of the uncertainty increase due to the replacement 
of a metric scale with an ordinal scale.  
 
The numerical example already used to explain prediction calculation is 
used here to clarify the model ranking evaluation procedure. 
Figure 3.12 shows both the experimental ranking developed on two 
experimental attributes y1 and y2 of Table 3.1, and the model ranking for 
the 9 training set elements. 
 

a b

c

d

e

f g h

i

Experimental ranking

c

d

e

f g h

i

a b

Model ranking

 

Figure 3.12 – Experimental versus model ranking Hasse diagrams. 
 
Table 3.4 collects the experimentally derived intervals, and those 
calculated, for y1, together with their disagreement δ i1

* . The last three 

columns contain the rank uncertainty of the calculated intervals above 
and below ( Di

sup  and Di
inf ) plus the experimental interval uncertainty Ri, 

from the model. 
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Element y1 ∆y1 Exp ∆y1 Mod δ i1
*  y D1 i

sup y D1 i
inf  y1 Ri1 

a 180 > 140 > 140 0.000 - 0 - 

b 150 > 140 > 140 0.000 - 0 - 

c 130 120-140 90-140 0.306 0 0 0.510 

d 140 130-150 130-150 0.000 0 0 0.204 

e 90 82-90 120-130 0.490 0 0 0.102 

f 100 90-130 82-90 0.490 0 0 0.082 

g 120 90-130 82-90 0.490 0 0 0.082 

h 90 90-130 82-90 0.490 0 0 0.082 

i 82 <90 <90 0.000 0 - - 

Table 3.4 – Experimentally and calculated intervals comparison for y1. 
 
For the y1 attribute the results are: 

δ1  = 0.252 
Q1 = 0.748 

NER1 = 0.667 

 
In the same way the experimental intervals of y2 were derived and the 
model intervals calculated. They are collected in Table 3.5 together with 
their disagreement δ i

* , the rank and experimental interval uncertainties. 
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Element y2 ∆y2 Exp ∆y2 Mod δ i 2
*  y D2 i

sup y D2 i
inf  y2 Ri2 

a 400 > 270 > 270 0.000 - 0 - 

b 420 > 270 > 270 0.000 - 0 - 

c 240 235-270 190-270 0.136 0 0 0.241 

d 270 240-400 240-400 0.000 0 0 0.482 

e 190 88-200 235-240 0.458 0 0 0.015 

f 230 190-240 88-190 0.458 0 0 0.307 

g 200 190-240 88-190 0.458 0 0 0.307 

h 235 190-240 88-190 0.458 0 0 0.307 

i 88 <190 <200 0.030 0 - - 

Table 3.5 – Experimentally and calculated intervals comparison for y2. 
 
For the y2 attribute the following results were obtained: 

δ2  = 0.222 
Q2 = 0.778 

NER2 = 0.556 

 
The overall model quality values calculated according to the parameters 
described above are shown in Table 3.6. 
 

QT NERT QG NERG QM NERM 

0.763 0.611 0.763 0.609 0.748 0.556 

Table 3.6 – Overall quality parameter values. 
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Table 3.7 allows the comparison of the quantitative values of y1 and y2 
and their corresponding experimentally derived intervals.  
 

Element y1 ∆y1 Exp
0

i1
*δ  y2 ∆y2 Exp

0
i 2
*δ  

a 180 > 140 0.408 400 > 270 0.392 

b 150 > 140 0.102 420 > 270 0.392 

c 130 120-140 0.204 240 235-270 0.105 

d 140 130-150 0.204 270 240-400 0.482 

e 90 82-90 0.082 190 88-200 0.337 

f 100 90-130 0.408 230 190-240 0.151 

g 120 90-130 0.408 200 190-240 0.151 

h 90 90-130 0.408 235 190-240 0.151 

i 82 <90 0.082 88 <190 0.307 

Table 3.7 – Experimental values and experimentally derived intervals of y1 and 
y2. 
 
As ~

δ1 = 0.256 and ~
δ2 =  = 0.274, the overall uncertainty increase 

is ~
δT = 0.265. 

 
 
3.4 W Kendall rule 
In searching for ranking models by evolutionary methods, optimising 
only Spearman’s rank correlation or the Tanimoto or similarity indices 
could be overoptimistic and not sufficient to find optimal predictive 
models. In fact, these models could be affected by unwanted properties 
like chance correlation or the presence of noisy variables in the models. 
To avoid unlike model properties like chance correlation, a fitness 
function similar to the QUIK rule used for regression models [Todeschini 
et. al., 1998] is proposed here. The fitness function is based on Kendall’s 
coefficient of concordance W [Kendall, 1948]. By using the W Kendall 
rule in an evolutionary algorithm for optimal model population searching, 
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there should bed the maximising of Spearman’s (or the Kendall) rank 
coefficient for total ranking models, or the similarity index (or Tanimoto 
indices) for partial ranking models; the models are accepted only if the 
following test is satisfied: 
 

W W W WX Y X− > δ ( )Kendall rule  

 
This is a simple test that allows the rejection of models with high 
predictor collinearity, which can lead to chance correlation. The W 
Kendall rule is based on Kendall’s coefficient of concordance W that 
measures the total correlation of a set of rank-ordered variables. This 
rule is derived from the assumption that the total correlation in the set 
given by the model attributes (x1, …, xp), plus the experimental attributes 
(y1, …, yR) should always be greater than that measured only in the set 
of model attributes. Therefore, the W Kendall rule accepts only ranking 
models with the WXY correlation among the [X+Y]–variables greater than 
the WX correlation among the [X]–variables or 
 

W W WX Y X− < →δ reject the model  

 
where δW is a user-defined threshold, greater than zero. 
The W Kendall rule has been demonstrated to be very effective in 
avoiding models with multi-collinearity without prediction power. 
 
 
3.5 Comparison of ranking model with traditional statistical 

techniques 
As pointed out above, searching for a mathematical model is a complex 
procedure which requires first the identification of the type of model that 
is supposed to be more appropriate for the system investigated and for 
the objectives of the analysis. For this reason, ranking model properties 
can be examined by comparing them with statistical methods such as 
multi-linear regression (MLR). 
Being based on elementary methods of Discrete Mathematics, total and 
partial ranking methods look very simple compared to multilinear 
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regression (MLR) or PLS, thus they can be a very useful and simple tool 
for QSAR modelling. While multilinear regression assumes linearity over 
the whole training set with respect to predictors or functions of predictors 
and, at the same time, requires the normal distribution of the residuals, 
partial order ranking does not assume linearity nor does it call for 
distribution qualities. Compared to MLR the main disadvantage of partial 
ranking could be the need for the pre-processing of data to avoid the 
effects of stochastic noise. However, it has been demonstrated that the 
influence of uncertainty on the ranking can be significantly reduced by 
broad order statistics. One of the main advantages of PLS is the finding 
of orthogonal latent variables together with a potential dimension 
reduction; however, as in MLR, the problem of finding relationships 
among latent variables is connected to the supposition of a specific 
functional relationship. 
As in traditional statistical QSAR approaches, ranking methods require a 
selection of variables to find the subset of variables which better 
reproduces the experimental ranking, excluding highly correlated 
variables, i.e. attributes which rank all the elements of the dataset in the 
same way. 
One of the main disadvantages of partial ranking models is that the 
results are difficult to visualise when the number of elements is high 
since each element, or equivalence class, is represented by a small 
circle in the diagram. In such a case a cluster pre-processing analysis 
could be sufficient to solve the problem. An advantage MLR has over the 
ranking method is that all the numerical information is retained, and the 
predicted properties are sharply quantified. However, this higher 
information content leads to lower robustness. Moreover, even if the 
information obtained by a ranking model is not quantitative information, 
but simply information regarding element inter-relations, in most 
environmental and chemical problems the aim of the statistical methods 
used in QSAR strategies is to find priorities, i.e. identify which chemicals 
are more toxic or hazardous and which sites require quick intervention. 
Thus, for when carrying out exposure analyses and risk assessment the 
use of ranking models is recommended, not to substitute conventional 
statistics but to supplement them. 



Indices for partial ranking analysis 

160 

CHAPTER 4 
 

Ranking applications 
 
 
 
 
The previous chapters explained how to use total and partial ranking 
methods to perform both data exploration and data modelling. 
In the following some case study applications are illustrated and 
discussed. The data analysed come from diverse fields; they are both 
real data provided by scientific collaborations and data published in 
literature, mainly used to check the approaches proposed on already 
well studied data. Each application has been chosen in order to explain 
and illustrate some of the theoretical aspects introduced in the fist 
chapters. The first one is a case of study performed in collaboration with 
the organic research group of the Department of Environmental 
Sciences of Milano-Bicocca: total ranking strategies have been applied 
on paper industry data with the aim of selecting the best bleaching 
process among the ones proposed in the last years. The second 
application here presented refers to the ranking analysis performed 
within the European BEAM project on toxicity data, the aim being to 
compare EC curves and provide a method able to detect easily the 
similarity degree of the mechanism of action of the chemicals under 
study. The third case of study concerns the use of partial order ranking 
strategies as usefull tool to support waste management decision 
strategies: the waste production and discharching data of Italian regions 
have been compared in order to explorate the efficiency of their waste 
policy and to set a priority list for the governement. In the fourth study a 
dataset of 158 chemicals already analysed in literature for their 
environmental effects and exposure potential, has been chosen to 
compare pre-processing tools and to give evidence of the usefulness of 
partial ranking strategies in environmental decision problems. The fifth 
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study has been performed in collaboration with the Italian Society of 
Chemistry and Cosmetology: both total and partial ranking analysis have 
been performed in order to evaluate the sensory panel and ranking the 
shampoo prototypes. The sixth analysis illustrates a total order ranking 
model developed for polychlorinated biphenyl compounds, which have 
been analysed according to some of their physico-chemical properties 
which play an important role on their environmental impact. The last 
study is an example of partial ranking model developed for 23 chemicals 
selected within the EU project: BEAM as active ingredients used in 
agricultural practice and tested for toxicity on Scenedesum vacuolatus. 
This analysis is here illustrated to point out that for exposure analysis 
and risk assessment ranking model can be a very useful tool in 
supporting decision making processes. 
 
 

 

4.1 Optimisation of the “pulp and bleaching” process in the 
paper industry: a green chemistry problem 
The paper industry is a high energy consuming industry, which makes a 
large use of feedstock and chemical additives. Much of the global pulp 
and paper industry has been making significant progress in pollution 
reduction in recent years. Many affords have been made to adopt new 
technology that holds promise to reduce energy consuming, 
environmental impact and use of chemical products. Green chemistry 
technologies have been researched and developed in paper industry for 
both their environmental benefits as well as economic benefits. 
Moreover new techniques based on diverse products are now under 
studies, the aim being selecting those that involve safer chemicals, i.e. 
not toxic and biodegradable chemicals, according to the green chemistry 
principles. The paper industry processes require a sequence of oxidative 
reactions commonly known as highly pollutant: 

1. Pulp process, which removes lignin from cellulose: it is a multi-
stages process, as lignin can not be selectively and completely 
oxidised in an unique step by any reagent. 
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2. Bleaching process to obtain bright white cellulosic fibre for quality 
papermaking 

3. Waste products treatment 

The dominant chemical technology for obtaining pulp suitable for 
bleaching is called the “kraft process”: it is able to reduce lignin content 
from 18-35 % to 2-6%. However the following oxidative bleaching is 
necessary to obtain white pulp that does not yellow on ageing. 
For many years, dominant oxidation technologies for papermaking have 
been provided by chlorine-based oxidants. Chlorine dioxide has 
expanded the most in the last decades because, even if it is a relatively 
expensive agent, it is highly selective for attack at the lignin over the 
cellulose. Nevertheless, chlorine-dioxide bleaching would appear to be 
less than ideal for the industry. It is one of the most expensive bleaching 
chemicals; it is produced in the mill by reduction of chlorate salts. 
Moreover, it is not totally chlorine free (TCF) and chlorine-containing 
effluents cannot be burned in the recovery boiler because they lead to 
corrosion problems. In addition, there is the potential for chlorinated 
dioxin production if the combustion proceeds in the presence of chlorine. 
For these reasons, environmental regulations coupled to market-
pressures have forced the pulp and paper industry to explore 
alternatives to chlorine based bleaching practises. 
Various technologies and bleaching chemicals have been suggested as 
candidates for chlorine replacement. The main bleaching processes 
investigated are the following: 

• O2 bleaching: the delignification is effective but its effectiveness is 
limited to about 50% after which a more severe treatment is required. 
The principal advantages concern the environment and the relative 
low chemical costs. However, the principal disadvantages are the 
high capital costs of O system and the low selectivity. 

• O2 + H2O2 bleaching: the hydrogen peroxide reinforced oxygen 
delignification is aimed to enhancing the efficiency of lignin removal. 
It allows the use of lower temperatures and the production of pulps 
with better strengths properties. 
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• O2 + H2SO5 bleaching: the peroxymonosulfuric acid was found to 
enhance the oxygen delignification effectiveness as well. 

• H2O2 bleaching: the hydrogen peroxide has been a technologically 
attractive oxidant to pulp and paper industry. The process involves a 
series of oxygen containing compounds that are formed and 
consumed dependent on pH, temperature and organic/inorganic 
contaminants. 

• H2O2 activated by slow iron catalysts: it was observed that the 
hydrogen peroxide process can be employed by activators able to 
provide higher selectivity 

• H2O2 activated by fast iron catalysts: modified activators have been 
analysed in order to obtain high selectivity and efficiency with smaller 
catalysts charge 

• POMs Na5SiVW11O40 bleaching: it is a new environmental friendly 
technology. They selectively oxidise lignin under anaerobic 
conditions and they can be reoxidise by oxygen. Na5SiVW11O40 
shows a high chemical selectivity; however, it is not stable at pH 
levels above 4. 

• POMs Na5SiVW11O40 bleaching in two successive stages: this 
process explores the possibility of further optimisation of the POM-
based delignification. 

• POMs Na6SiV2W10O40 bleaching: this process is based on a new 
kind of POM, which is stable at pH levels above neutral and is re-
oxidised by oxygen on the basis of a new synthetic approach 

• O3 bleaching: it is highly capital intensive and the process is 
comparatively complex. Nevertheless, it is fast and the coupling of 
the advantage to the TCF environmental benefits has induced 
several companies to work on this technology. 

 
It is now evident that the choice of the best bleaching process by the 
pulp and paper industry is not easy, as each of the mentioned process 
shows advantages and disadvantages at the same time. Moreover, the 
process selection is influenced by several aspects; in addition to the 
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cited process aspects regarding the selectivity as well as the 
effectiveness, environmental properties together with economic aspects 
have to be taken into account. As a consequence of that, the selection of 
the best bleaching process is a complex problem: since the final 
objective consists in the contemporarily optimisation of several sub-
objectives, decisions have to be taken contemporarily accounting 
several criteria. The evaluation of the overall quality of each process has 
to be based on several criteria. 
 
 
4.1.1 Bleaching processes data 

Multicriteria decision making methods have been applied on 12 
bleaching processes performed on pulp delignificated by the kraft 
method. Each process has been evaluated according to process, 
efficiency, environmental and economic criteria. 

The process criteria analysed are the following: 
1. number of reaction steps 
2. type of condition: aerobic / anaerobic 
3. number of oxidant agents 
4. reaction time 
5. temperature required for the process 
6. temperature range 
7. kind of reaction: stechiometric / catalytic / catalytic with regeneration 

of the catalyst 
 

The efficiency or selectivity criteria are: 
1. pulp viscosity: the higher the selectivity, the longer the cellulose 

polymer chains in the fibres, the stronger the final paper product. 
Pulp strength is proportional to the length of the cellulose chains and 
the viscosity of pulp solutions is an indicator of pulp strength 

2. kappa number: it is a measure of the amount of lignin present on the 
pulp 
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The environmental aspects are: 
1. number of reagents involved in the process 
2. pH 
3. totally chlorine free TCF 
The economic criteria are: 
1. catalyst cost 
2. oxidant agent cost 
 
Table 4.1 shows the identification code used for twelve bleaching 
processes compared in the multicriteria analysis. 
 

 ID  Activating agent 

 D  Chlorine dioxide 

 O  Oxygen 

 OP  Oxygen and hydrogen peroxide 

 Opx  Oxygen and peroxymonosulphate 

 QP*  Uncatalyzed hydrogen peroxide bleaching process 

 QP*Fe  slow  Hydrogen peroxide with iron slow catalysts 

 QP*Fe fast  Hydrogen peroxide with iron fast catalysts 

 POMs (1)  Oxygen and Na5SiVW11O40 

 POMs (2)  Oxygen and Na5SiVW11O40 in two successive steps 

 POMs (3)  Oxygen and SiV2W10O40 

 OZE  (1)  Oxygen and Ozone (inlet ozone concentration = 2.0 wt) 

 OZE  (2)  Oxygen and Ozone (inlet ozone concentration = 0.6 wt) 

Table 4.1 – Bleaching processes analysed. 
 
The seven process criteria values of the bleaching processes under 
study are collected in Table 4.2 . 
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 Process criteria 

Process N.step  Cond a N. oxid 
Time 
(min) 

T (C°) ∆T  React.b 

D 1 1 1 60 50 0 1 

O 1 1 1 240 100 0 1 

OP 2 1 2 85 90 26 1 

Opx 2 1 2 85 90 24 1 

QP*   2 1 1 360 90 0 1 

QP*Fe  slow 2 1 1 60 90 0 3 

QP*Fe fast 2 1 1 37.5 90 0 3 

POMs (1) 2 2 2 30 125 0 4 

POMs (2) 4 2 2 60 90 0 4 

POMs (3) 2 2 2 180 150 0 4 

OZE  (1) 3 1 2 93 115 45 1 

OZE  (2) 3 1 2 93 115 45 1 

Table 4.2 – Process criteria.  
a: Reaction condition: 1 = aerobic; 2 = aero-anaerobic. 
b: Reaction: 1 = stechiometric; 3 = catalytic; 4 = catalytic with catalyst 
regeneration 
 
 
Table 4.3 shows the environmental, efficiency and economic criterion 
values of the bleaching processes. 
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 Environmental criteria Efficiency criteria Economic criteria 

Process N. reag. pH TCFa ∆K ∆ viscb $ catalystc $ oxidd. 

D 1 3 0 18.5 6.4 0 1 

O 2 10.5 1 14.5 14.4 0 3 

OP 1 11.5 1 11.4 15.1 0 3 

Opx 1 9.7 1 17.2 21.2 0 2 

QP*   4 11.6 1 15.2 13.4 0 2 

QP*Fe  slow 4 11.6 1 14.7 12.1 1 2 

QP*Fe fast 4 11.6 1 13.5 10.3 1 2 

POMs (1) 0 7 1 11.9 6.5 3 5 

POMs (2) 0 5.5 1 12.6 1.4 3 5 

POMs (3) 0 9.3 1 25 11 3 5 

OZE  (1) 2 2 1 7.9 8.4 0 4 

OZE  (2) 2 2 1 6.4 5 0 4 

Table 4.3 – Environmental, efficiency and economic criteria.  
a: Totally chlorine free process: 0 = no; 1 = yes 
b: Viscosity variation (cP) 
c: Catalyst cost: 0 = null; 1 = low; 2 = medium; 3 = high 
d: Oxidant cost: 1 = very low; 2 = low; 3 = medium; 4 = high; 5 = very high 
 
 
4.1.2 Bleaching ranking analysis 

Since to perform ranking analysis of the bleaching processes, it was 
necessary to explicit whether the best condition was satisfied with a 
minimum value or a maximum value of the criterion and the trend from 
the minimum to the maximum, scientifically expert considerations have 
been taken into account. 
The criterion setting is illustrated in Table 4.4, the criteria were weighted 
equally. The overall quality of the processes have been calculated by 
Desirability, Utility and Dominance functions; the obtained results are 
shown in Table 4.5 and the corresponding histograms in Figure 4.1. 
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Criterion  Function 

 Number of reaction steps  Inverse linear 
 Reaction condition  Logarithmic 
 Number of oxidant agents  Inverse exponential 
 Reaction time  Inverse exponential 
 Temperature required   Inverse sigmoid 
 Temperature range  Inverse linear 
 Kind of reaction   Linear 
 Number of reagents involved  Inverse linear 
 pH  Triangular 
 TCF  Linear 
 Kappa number variation  Sigmoid 
 Pulp viscosity variation  Inverse sigmoid 
 Catalyst cost  Inverse logarithmic 
 Oxidant agent cost  Inverse sigmoid 

Table 4.4 – Criterion setting.  
 

Process Desirability Utility Dominance 

O 0.703 0.751 0.346 
QP*Fe  slow 0.663 0.729 0.378 
Opx 0.660 0.745 0.363 
QP*Fe fast 0.658 0.730 0.391 
OP 0.640 0.705 0.284 
QP*   0.632 0.706 0.324 
POMs (1) 0.526 0.731 0.415 
POMs (2) 0.516 0.719 0.418 
OZE  (1) 0.512 0.617 0.177 
POMs (3) 0.509 0.728 0.363 
OZE  (2) 0.498 0.620 0.186 
D 0.000 0.787 0.541 

Table 4.5 –Desirability, Utility and Dominance values calculated on fourteen 
criteria (sorted according to desirability values). 
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Figure 4.1 –Desirability, Utility and Dominance histograms. 
 
It can be pointed out that the desirability quality evaluation is much more 
demanding than the utility function. The chlorine dioxide bleaching 
process low desirability (equal to 0) is due to the fact that it is not a TCF 
process and thus it is a high environmental impact process. The highest 
quality according to desirability index is provided by the oxygen 
bleaching, followed by hydrogen peroxide with iron slow catalysts, 
oxygen and peroxymonosulphate bleaching and hydrogen peroxide with 
iron fast catalysts process. These are the bleaching processes that show 
the overall highest quality; contemporary accounting all the criteria they 
are described with. They result as the ones that mostly satisfy the 
required properties of an acceptable bleaching process, as far as 
concerns the process, efficiency, environmental and economic criteria.  
The evaluation provided by the utility method is much less severe than 
the desirability one: in fact, the overall quality of a process can be high 
even if a single utility function is low. The results provided by the 
dominance methods are based on pair comparison but it is less 
susceptible to the criterion setting. 
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Moreover, as the aim of the study was to find out the best bleaching 
process able to provide a satisfactory alternative to the highly 
environmental impact chlorine dioxide process, a further multicriteria 
analysis has been performed accounting separately for the process, 
efficiency, environmental and economic criteria in order to have a 
deeper understanding of the advantages and disadvantages of the 
processes. The multicriteria ranking on seven process criteria, was 
performed with the aim of finding out the bleaching process conducted in 
the best process conditions. The derived ranking illustrated in Table 4.6 
confirms the good performances of the bleaching process based on 
hydrogen peroxide with iron slow and fast catalysts. In fact, these 
processes are realised in only two steps, in aerobic condition, with only 
one oxidant, a very low reaction time (37-60 min), at a 90°C temperature 
and by a catalytic reaction.  
 

Process Desirability Utility Dominance 

QP*Fe fast 0.871 0.879 0.555 

QP*Fe slow 0.871 0.879 0.526 

POMs (1) 0.801 0.849 0.485 

D 0.800 0.870 0.578 

POMs (2) 0.775 0.842 0.448 

O 0.746 0.812 0.351 

Opx 0.702 0.755 0.290 

OP 0.699 0.752 0.274 

QP* 0.691 0.750 0.324 

POMs (3) 0.676 0.811 0.337 

OZE  (1) 0.587 0.644 0.123 

OZE  (2) 0.587 0.644 0.123 

Table 4.6 –Desirability, Utility and Dominance values calculated on seven 
process criteria (sorted according to desirability values). 
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A satisfactory result is provided by oxygen and Na5SiVW11O40 bleaching 
process (POMs (1)) as well. In fact, it is carried out in two steps, with two 
oxidants (Na5SiVW11O40 and O2), with a reaction time pretty low (30 
min), at a 125°C temperature and it does not require changing 
temperature during the process. Moreover the reaction is catalytic with 
catalyst auto regeneration. 
When the oxygen and Na5SiVW11O40 bleaching process is realised in 
two successive steps (POMs (2)), its overall process quality is a little bit 
lower as it requires four reaction steps. 
The oxygen and SiV2W10O40 bleaching process (POMs (3)) is slightly 
penalised with respects to the other bleaching process based on 
polyoxomethalate oxidants, since it requires longer time (180 min) and 
higher temperature (150°C). Being the oxygen and oxygen plus 
hydrogen peroxide processes based on stechiometric reactions, their 
overall process quality is not in the first positions. 
The ozone processes seem to be the worse ones as far as concerns 
process criteria; in fact, they are quite complex processes provided by 
three reaction steps and requiring temperature changing during the 
process. 
The ranking evaluation of the twelve processes based on their 
environmental impact (Table 4.7) identified the polyoxomethalate oxidant 
bleaching processes as the best ones, according to the low reagents 
involved and their moderate pH. 
 
Obviously, the ranking resulted from the efficiency criteria which 
measure the real process capability to remove lignin from cellulose in 
such a way to provide bright white cellulosic fibre for quality 
papermaking was of great interest (Table 4.8). 
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Process Desirability Utility Dominance 

POMs (1) 1.000 1.000 0.758 
POMs (2) 0.923 0.929 0.722 
POMs (3) 0.876 0.890 0.687 
Opx 0.789 0.805 0.564 
O 0.669 0.700 0.413 
OP 0.659 0.719 0.447 
OZE  (1) 0.556 0.629 0.185 
OZE  (2) 0.556 0.629 0.185 
QP*Fe fast  0.409 0.514 0.176 
QP*   0.409 0.514 0.176 
QP*Fe slow  0.409 0.514 0.176 
D 0.000 0.410 0.282 

Table 4.7 –Desirability, Utility and Dominance values calculated on three 
environmental criteria (sorted according to desirability values). 
 
 

Process Desirability Utility Dominance 

POMs (3) 0.874 0.878 0.636 
D 0.849 0.854 0.818 
QP*Fe  slow 0.587 0.600 0.394 
QP* 0.571 0.573 0.394 
QP*Fe fast 0.559 0.602 0.364 
POMs (2) 0.554 0.650 0.576 
O 0.502 0.504 0.273 
POMs (1) 0.498 0.603 0.394 
OP 0.337 0.362 0.091 
OZE  (1) 0.278 0.493 0.242 
Opx 0.276 0.394 0.273 
OZE  (2) 0.228 0.510 0.303 

Table 4.8 –Desirability, Utility and Dominance values calculated on two 
efficiency criteria (sorted according to desirability values). 
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From the obtained results it is to be highlighted that the oxygen and 
SiV2W10O40 bleaching process (POMs (3)) is the only one which being 
even more efficient than the chlorine dioxide process, can realistically 
compete with it. In fact it is the process that provides the major lignin 
removal from cellulose, whereas all the other processes can not 
compete with chlorine process, according to the process efficiency. 
Since the economic aspect cannot be ignored being one of the most 
important for the paper industry, the economic properties have been 
analysed as well. The results (Table 4.9) motivate the spread use of 
chlorine dioxide bleaching process, being the one more convenient; at 
the same time it is well explained the reason for the low overall quality of 
bleaching processes based on polyoxomethalate oxidants. 

 
Process Desirability Utility Dominance 

D 1.000 1.000 0.818 
QP* 0.894 0.900 0.677 
Opx 0.894 0.900 0.677 
OP 0.775 0.800 0.515 
O 0.775 0.800 0.515 
QP*Fe  slow 0.775 0.775 0.444 
QP*Fe fast 0.775 0.775 0.444 
OZE  (1) 0.632 0.700 0.414 
OZE  (2) 0.632 0.700 0.414 
POMs (3) 0.224 0.225 0.061 
POMs (1) 0.224 0.225 0.061 
POMs (2) 0.224 0.225 0.061 

Table 4.9 –Desirability, Utility and Dominance values calculated on two 
economic criteria (sorted according to desirability values). 
 

The hypothesis of both the relevant POM bleaching quality and their 
penalty according to economic criteria has been confirmed by a further 
ranking analysis performed on all the criteria excepted the economic 
ones. In this case POM processes resulted the best ones. 
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According to all the analyses performed, at the time, the best bleaching 
processes, which can realistically be valid alternatives to the chlorine 
dioxide process, are: 

Oxygen bleaching 
Oxygen and peroxymonosulphate bleaching 
Hydrogen peroxide with iron slow catalysts  
Hydrogen peroxide with iron fast catalysts 
 
Moreover, it is to be highlighted that POM bleaching processes seem to 
be the more promising process according to environmental, process and 
efficiency criteria; however, their wide use is not permitted because of 
the high costs of their synthesis. 
The development of new cheaper technologies for POM synthesis would 
make the POM bleaching process economically accessible and 
competitive with the traditional chlorine dioxide process. 
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4.2 Comparison of toxicity profiles by Hasse diagram 
technique 

Natural environments and ecosystems are not exposed to individual 
chemicals but to complex multi-component mixtures of chemicals of 
various origin (industry, agriculture, urban sewage). Nevertheless, most 
ecotoxicological research and chemical regulation focus on hazard and 
exposure assessment of individual chemicals only and the chemical 
mixtures in the environment is ignored to a large extent. Therefore, there 
is the need for developing risk assessment procedures no longer 
restricted to single toxicants and instead considering combined effects 
resulting from multiple chemical exposure. The BEAM project (Bridging 
Effect Assessment of Mixtures to Ecosystem Situations and Regulation) 
(see also: http://www.aquatox.uni-bremen.de/beam) is an European 
research project started in spring 2000 with the aim of developing 
procedures capable to derive Environmental Quality Standards for 
mixtures of chemicals likely to occur in the environment. The predictive 
mixture toxicities approaches imply that the chemical composition of the 
mixture of interest in known. Two different concepts, termed 
Concentration Addition and Independent Action, are thought of being 
more generally applicable and allow to calculate an expected mixture 
toxicity on the basis of known toxicities of the mixture components. Both 
concepts consider cases in which all substances in a mixture affect the 
same experimental endpoint, and both require precise knowledge about 
qualitative and quantitative composition of the mixture  of study. 
However they are based on opposite assumption with respect to the 
similarity of the mechanism of action of the individual components. The 
Concentration Addition concept is based on the idea of a similar 
mechanism of action of all the substances in the examined mixture and 
assumes that the total effect of the mixture is the sum of the 
concentrations of the single compounds in the mixture scaled for their 
potency. The alternative concept of Independent Action assumes that 
the mixture components act dissimilarly and estimates the mixture effect 
from the product of the chemical effects applied singly in a concentration 
that corresponds to the concentration of the chemicals in the mixture. 
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As these two concepts are based on opposite assumption with respect 
to the similarity of the mechanism of action of the individual components, 
the first step in mixture risk assessment procedure is to evaluate the 
similarity of the mechanism of action of the individual components. 
The mode of action of a toxicant is frequently described by its Effect- 
Concentration curve, where the concentrations of the toxicant that are 
estimated to cause a predefined effect are plotted. Typically the entirely 
curve is drawn from the EC01, EC10, EC50 and EC90 values, which are 
the concentration at which 1%, 10%, 50% and 90% of the test 
population are affected, respectively. If the common assumption that 
similarly acting substances show similar EC curves, whereas dissimilarly 
acting substances show dissimilar EC curves, characterised by many 
crossing, is accepted then, the EC curves have to be compared to 
establish whether the mixture components act with the same  
mechanism of action or not, and thus whether using the Concentration 
Addition or Independent Action mixture toxicity prediction model. The 
Hasse diagram technique has been proposed as an useful tool to 
compare and rank toxicities of chemicals studied in the BEAM project. 
Being Hasse diagram technique a multivariate explorative method it is 
not limited to one level of biological response and thus it seems suitable 
for Concentraction Effect curves comparison, highlighting different EC 
curve shapes.  
 
 
4.2.1 Toxicity data 

A ranking explorative analysis by Hasse diagram technique has been 
performed to compare EC curves both of similarly and dissimilarly acting 
substances, the aim being to evaluate the Hasse diagram capability of 
comparing toxicity profiles and provide diverse results for EC curves of 
substances with the same mode of action from the ones of substances 
with different mode of action. The Hasse diagram technique has been 
applied on two datasets: 

• 12 phenylureas  Æ  similar acting chemicals 

• 21 diverse chemical  Æ  dissimilar acting chemicals 
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4.2.2 Comparison of concentration effect curves of similar acting 
substances 

The EC01, EC10, EC50 and EC90 values of 12 phenylureas analysed 
by Hasse diagram technique are collected in Table 4.10. 
 
 

  Log(1/EC) 

ID Substance EC01 EC10 EC50 EC90 

1 Buturon 1.877 0.897 0.111 -0.390 

2 Chlobromuron 3.244 2.059 1.222 0.824 

3 Chlortoluron 2.523 1.576 0.815 0.332 

4 Diuron 3.071 2.223 1.538 1.109 

5 Fenuron 0.927 0.137 -0.633 -1.214 

6 Fluometuron 2.030 0.772 -0.173 -0.849 

7 Isoproturon 2.226 1.363 0.642 0.166 

8 Linuron 3.155 1.990 1.056 0.463 

9 Metobromuron 1.430 0.630 -0.019 -0.490 

10 Metoxuron 2.320 1.209 0.319 -0.249 

11 Monolinuron 2.058 0.920 0.007 -0.575 

12 Monuron 2.569 1.367 0.402 -0.212 

Table 4.10 –Toxicity values of 12 phenylureas. 
 
The Hasse diagram, shown in Figure 4.2, is a quite simple diagram 
arranged in seven levels. It identifies two maximals: chlobromuron and 
diuron, selected as the most toxic. They are incomparable since some 
contradictions exist among their EC values: chlobromuron is more toxic 
than diuron on 01 and 50 concentration levels, but it is less toxic on 10 
and 90 concentration levels. Fenuron is the less toxic substance, as it is 
characterised by the lowest effect concentration values. Since the 12 
phenylureas are similar acting substances, not too many contradictions 
in their EC values exist. Thus, as expected, the Hasse diagram is 
characterised by a few number of incomparabilities: 18 over 132 
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comparisons. The 9 incomparabilities (counted in only one direction) are 
listed below: 

 

• (2) Chlobromuron ÁÁ  (4) Diuron  
• (4) Diuron  ÁÁ (8) Linuron  
• (3) Chlortoluron ÁÁ (12) Monuron  
• (7) Isoproturon   ÁÁ (12) Monuron  
• (7) Isoproturon   ÁÁ (10) Metoxuron 
• (1) Buturon   ÁÁ (11) Monolinuron 
• (1) Buturon   ÁÁ (6) Flometuron   
• (9) Metobromuron ÁÁ (11) Monolinuron 
• (6) Flometuron   ÁÁ (9) Metobromuron 
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Figure 4.2 – Hasse diagram of 12 phenylureas. 



Comparison of toxicity profiles by Hasse diagram technique 

179 

 
In Figure 4.3, the phenylureas EC curves are illustrated: the EC curves 
are quite similar and only a few crossing, corresponding to the above 
incomparabilities can be identified. 
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Figure 4.3 – Effect concentration curves of 12 phenylureas. 
 
Therefore, the analysis performed not only allows to rank the substances 
according to their toxicity values but also provide a clear and simple way 
to detect EC curves crossing.  
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4.2.3 Comparison of concentration effect curves of dissimilar acting 
substances 

The 21 substances with diverse mechanism of action analysed by Hasse 
diagram technique together with their EC01, EC10, EC50 and EC90 
values of are collected in Table 4.11. 
 

  Log(1/EC) 

ID Substance EC01 EC10 EC50 EC90 

1 Aclonifen 2.455 2.022 1.523 1.067 

2 8-Azaguanine 2.347 1.815 1.150 0.134 

3 Azaserin 2.592 0.927 -0.250 -0.873 

4 CCCP 0.979 0.488 -0.092 -0.653 

5 Chloramphenicol -0.483 -0.721 -1.100 -1.955 

6 Fenfuram 1.106 0.139 -0.635 -1.129 

7 5-Fluoruracil 1.983 1.582 1.013 -0.059 

8 Fusidic acid 0.588 0.247 -0.256 -0.906 

9 Kresoxim-methyl 0.793 0.296 -0.310 -0.925 

10 Metalaxyl -0.784 -1.633 -2.312 -2.745 

11 Metazachlor 2.268 1.182 0.775 0.587 

12 Metsulfuron-methyl 1.366 0.273 -0.604 -0.162 

13 Nalidixic acid -0.700 -1.419 -1.994 -2.362 

14 Norflurazon 2.249 1.959 1.699 1.428 

15 Paraquat 0.668 0.417 0.107 -0.292 

16 n-Propyl-gallate -1.441 -1.845 -2.214 -2.583 

17 Pyrimethamin -0.218 -1.157 -1.711 -2.008 

18 Seanine 1.155 0.924 0.635 0.187 

19 Steptomycin-sulphate -0.213 -0.676 -1.099 -1.523 

20 Terbuthylazine 2.243 1.642 1.161 0.852 

21 Triadimenol 0.496 -0.109 -0.539 -0.76 

Table 4.11 –Toxicity values of 21 dissimilar acting substances. 
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The Hasse diagram, shown in Figure 4.4, is a quite complex diagram 
arranged in nine levels. It identifies three maximals, aclonifen, azaserin 
and norflurazon, and two minimals metalaxyl and n-propyl-gallate. Being 
the 21 substances characterised by a diverse mechanism of action  
several contradictions exist among their EC values. The diagram 
identifies 76 incomparabilities over 420 comparisons.  
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Figure 4.4 – Hasse diagram of 21 dissimilar acting substances. 
 
 
In Figure 4.5, the 21 substances EC curves are illustrated: the EC 
curves are pretty diverse and many crossing, corresponding to the 
Hasse diagram incomparabilities can be identified. 
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Figure 4.5 – Effect concentration curves of 21 dissimilar acting substances. 
 
The obtained results on the two datasets investigated highlight that the 
Hasse diagram technique can be an efficient and simple tool not only to 
rank the substances according to their toxicity values but also to detect 
the similarity of toxicants mechanism of action. In fact, the higher the 
number of incomparabilities in the diagram, the higher the number of 
crossing in the EC curves, and thus the higher the dissimilarity in the 
mechanism of action of the substances under study. Thus, the 
complexity and the number of incomparabilities provided by partial 
ranking analysis on the EC values of substances with an unknown mode 
of action can be used as a measure of the dissimilarity degree in their 
mechanism, suggesting which mixture toxicity prediction model to be 
used (Concentration Addition or Independent Action). 
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4.3 Waste management analysis 
Over 1.8 billion tonnes of waste are generated each year in Europe. This 
is mainly made up of waste coming from households, commercial 
activities (e.g., shops, restaurants, hospitals etc.), industry (e.g, 
pharmaceutical companies, clothes manufacturers etc.), agriculture 
(e.g., slurry), construction and demolition projects, mining and quarrying 
activities and from the generation of energy. With such vast quantities of 
waste being produced, it is of vital importance that it is managed in such 
a way that it does not cause any harm to either human health or to the 
environment. Between 1990 and 1995, the amount of waste generated 
in Europe increased by 10%, according to the Organisation for 
Economic Cooperation and Development (OECD). Most of what we 
throw away is either burnt in incinerators, or dumped into landfill sites 
(67%). But both these methods create environmental damage. 
Landfilling not only takes up more and more valuable land space, it also 
causes air, water and soil pollution, discharging carbon dioxide (CO2) 
and methane (CH4) into the atmosphere and chemicals and pesticides 
into the earth and groundwater. This, in turn, is harmful to human health, 
as well as to plants and animals. Under EU policy, landfilling is seen as 
the last resort and should only be used when all the other options have 
been exhausted , i.e., only material that cannot be prevented, re-used, 
recycled or otherwise treated should be landfilled. The EU’s Sixth 
Environment Action Programme identifies waste prevention and 
management as one of four top priorities. The EU is aiming for a 
significant cut in the amount of rubbish generated, through new waste 
prevention initiatives, better use of resources, and encouraging a shift to 
more sustainable consumption patterns. It wants to reduce the quantity 
of waste going to ‘final disposal’ by 20% from 2000 to 2010, and by 50% 
by 2050, with special emphasis on cutting hazardous waste. In the 
present study, partial ranking analysis has been performed on waste 
data provided by National Waste Cadaster, with the aim of comparing 
italian regions as far as concerns the amount of waste they produce and 
discharge in landfills. Moreover, ranking analysis providing a list of 
priority italian regions is a suitable tool to support waste management 
decisions problems. 
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4.3.1 Waste data 

A ranking explorative analysis by Hasse diagram technique has been 
performed to compare italian regions according to the amount of waste 
they produce and discharge in landfills. The data have been provided by 
National Waste Cadaster and are collected in Table 4.12 and 4.13: each 
region is decribed in terms of urban waste, non-hazardous and 
hazardous waste production and amount of their discharging in landfills. 

 

ID Region UW NHW HW 

1 Piemonte 2006853 3841809 402117 
2 Valle d'Aosta 62614 39189 2918 
3 Lombardia 4279974 8494457 1172724 
4 Trentino Alto Adige 508272 711490 42048 
5 Veneto 2112601 5335021 440440 
6 Friuli Venezia Giulia 572480 1326474 128783 
7 Liguria 898758 922149 89203 
8 Emilia Romagna 2413949 5998763 419496 
9 Toscana 2105665 5012818 230292 
10 Umbria 422108 1373125 21173 
11 Marche 761011 1037527 43161 
12 Lazio 2779686 1884997 121110 
13 Abruzzo 608995 676999 48058 
14 Molise 113930 300191 13203 
15 Campania 2561546 1736932 84664 
16 Puglia 1802608 2805891 98445 
17 Basilicata 218822 474929 6947 
18 Calabria 821129 375414 43988 
19 Sicilia 2552727 970225 89318 
20 Sardegna 760186 1526171 313231 

Table 4.12 – Waste production in italian region in 1999. UW: urban waste in 
t/year; NHW: non-hazardous waste in t/year; HW: hazardous waste in t/year. 
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ID Region L-UW L-NHW L-HW 

1 Piemonte 1526554 864865 17543 
2 Valle d'Aosta 54923 67070 0 

3 Lombardia 1504586 3979258 100729 

4 Trentino Alto Adige 308143 506370 27834 

5 Veneto 1489658 2274287 115059 

6 Friuli Venezia Giulia 334832 461971 1766 

7 Liguria 833126 1219190 44287 

8 Emilia Romagna 1879281 411610 6625 

9 Toscana 1275113 1641492 88308 

10 Umbria 324790 718974 3630 

11 Marche 684174 249353 737 

12 Lazio 2619169 1170487 10660 

13 Abruzzo 477690 202509 5754 

14 Molise 111560 26834 1561 

15 Campania 2635617 59228 4925 

16 Puglia 1776093 1061765 1521 

17 Basilicata 198057 143951 4131 

18 Calabria 724757 136005 17987 

19 Sicilia 2412985 530890 7755 

20 Sardegna 573584 1443890 278340 

Table 4.13 – Waste discharging in lanfills in italian region in 1999. L-UW: urban 
waste discharged in landfills in t/year; L-NHW: non-hazardous waste discharged 
in landfills in t/year; L-HW: hazardous waste discharged in landfills in t/year. 
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4.3.2 Waste ranking analysis 

Partial ranking analysis has been performed on the waste production 
data, the aim being to analyse the efficiency of italian region waste 
management strategy to reduce the amount of waste generated. Figure 
4.6 shows the priority ranking in form of a Hasse diagram according to 
waste production. The twenty regions have been compared have been 
ranked in eight levels. 
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Figure 4.6 – Hasse diagram of 20 italian regions ranked according to their 
amount of waste production. (UW, NHW, HW). 
 
The diagram allows an easy comparison of the regions: it is not 
surprising that Lomabrdia is the maximal region for waste production, 
followed by Veneto, Emilia Romagna and Lazio, which are all 
characterside by a high waste production even if they are not 
comparable. These three regions must be considered of equally priority 
even if for different reasons. In fact, the urban and non-hazardous waste 
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production of Emilia Romagna is greater than the Veneto one, but the 
hazardous waste production of Veneto is higher than the Emilia 
Romagna one, due to the great number of industries located in Veneto 
region. Moreover, Lazio is the region with the second highest urban 
waste production and is characterised by a lower non-hazardous and 
hazardous waste production than Veneto and Emilia Romagna. As it 
was expected Valle d’Aosta is minimal, being characterised by the 
lowest waste production; it is follwed by Molise and Basilicata: the 
former shows a higher production of hazardous waste and a lower 
production of urban and non-hazardous waste than the latter. 
As European Member States should ensure that existing landfill sites 
may not continue to operate unless they comply with the provisions of 
the Council Directive 99/31/EC of 26 April 1999 on the landfill of waste, it 
was of relevance for the Italian governement to evaluate the amount of 
waste discharged in landfills. Thus, a partial ranking analysis has been 
performed on waste discharging data, and the corresponding Hasse 
diagram is shown in Figure 4.7. 
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Figure 4.7 – Hasse diagram of 20 italian regions ranked according to their 
amount of waste discharged in landfills. (L-UW, L-NHW, L-HW). 
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The diagram points out six regions that are the most environmentally 
hazardous because of the huge amount of waste they discharge in 
landfills: Piemonte, Lombardia, Veneto, Lazio, Campania and Sargegna 
as maximals: even if differences exist related to the kind of waste 
discharged in landfills, all these regions being at the first priority level 
must be considered of major attention. Moreover, attention should be 
paid even to the second priority regions: Toscana, Puglia and Sicilia 
wich are then followed by Friuli Venezia Giulia, Liguria, Umbria and 
Marche, on the third level. When all the variables are contemporarly 
taken into account, the priority ranking obtained in form of Hasse 
diagram is the one shown in Figure 4.8. 
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Figure 4.8 – Hasse diagram of 20 italian regions ranked according to their 
amount of waste produced and discharged in landfills. (UW, NHW, HW, L-UW, 
L-NHW, L-HW). 
 
It can be pointed out that the twenty regions have been ranked in six 
priority levels: Puglia is now at the first attention level together with 
Piemonte, Lombardia, Veneto, Emilia Romagna, Lazio, Campania and 
Sargegna. Toscana and Sicilia are located at the second level. 
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The present study shows that Hasse diagram technique is a solution to 
the understanding of multivariate data without reducing the information 
in a trivial chain. Moreover, partial ranking methods are suitable 
techniques for analysing environmental problems, which are based on 
multiple criteria to estimate hazard. Hasse diagrams allow visual 
comparison of regions based on multiple variables, which might 
otherwise be very confusing when displayed in table form. The ranking 
procedure provides a ranking of regions into distinct hazard groups and 
a visual identification of contradictions. The approach proposed can be 
included into an expert system that help decision makers interested in 
objective data ranking analysis. 
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4.4 Ranking chemicals for environmental hazard: 
comparison of pre-processing methodologies. 

In March 1999 the European Council required the Commission to 
establish a list of substances priorised on the basis of their risk to the 
aquatic environment and to human health via the aquatic environment. 
In order to establish a list of priority substances in accordance with the 
given provisions, a combined monitoring-based and modelling based 
priority scheme have been elaborated. Several approaches have been 
proposed: often total ranking methods have been used. These methods 
rank chemicals according to an index function which combines chemical 
properties describing the toxicity, exposure and persistence in the 
environment of the chemicals investigated. The choice of the index 
function and the weights assigned to each chemical property is 
subjective and depend on the developer of the analysis. However, by 
these approaches much information is lost as the same global index can 
be provided to chemicals which effects on the environment may be 
totally different. Thus, in all that cases which the aims are both to 
provide a ranking of chemicals for environmental hazard and to detect 
their different effect on the environment, a partial ranking analysis is 
more suitable than a total ranking approach. In fact, Hasse diagrams 
make contradictions in data evident and allow to easily relate the ranking 
position of chemicals of interest to any contradictory data available. 
However, as pointed out in chapter 2, one of the main drawback of the 
Hasse diagram technique is its strongly dependence on the clear 
appearance of the diagram, which is hardly achievable when many 
chemicals are analysed and compared, or when many criteria are 
considered and when data are affected by uncertainty. In these cases, 
pre-processing techniques are required. In the present study a priority 
setting scheme based on partial ranking method is proposed. The 
environmental hazard of 140 chemicals including inorganic chemicals 
plus 18 high volume pesticides has been analysed by comparing their 
relative risk, computed by Hasse diagram technique. Chemicals have 
been described by many criteria accounting to their effect on human 
health and on environment with the aim of setting protocols and select 
priority chemicals to be submitted to revision or to supplementary 
testing. 
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Pre-processing statistical techniques have been analysed and compared 
with respect to their capability to support ranking analysis.  
 
 
4.4.1 The dataset 

The dataset analysed is made of 158 chemicals collected by Swanson 
[Swanson et al., 1997] and described by their human health effects, 
environmental effects and exposure potential. One hundred and forty are 
from the 1989 EPA Toxic Release Inventory (TRI) and 21 are high 
volume pesticides. Table 4.14 shows their toxicological and exposure 
endpoints and Table 4.15a and 4.15b all the data. The 1989 TRI data 
are pretty old however in this study the interest is in the methodology 
rather than in how the data are since these results are not relevant by 
themselves. Moreover, this dataset being already analysed by partial 
ranking approach by Halfon and Bruggemman [Halfon and 
Bruggemman, 1998] has been selected in order to allow a comparison of 
the proposed pre-processing technique with the one adopted by 
Brüggemann and Halfon. The dataset include toxicity data, persistence 
data and loadings (10 criteria for each substance).  
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 Toxicological endpoint Meaning 

LD50 Rodent Oral LD50 The concentration of a substance, 
expressed in mass of the substance per 
mass of the animal, that will kill half of a 
group of rodents within 14 days when 
administered orally as a single dose. 

LC50 Rodent Inhalation 
LC50 

The concentration of a substance in air that 
will kill half of a group of rodents when 
inhaled continuously for 8 h or less. 

NCAR Evidence of 
carcinogenicity 

Based on EPA and International Agency for 
Research on Cancer (IARC) classification 

NTOX Other specific effects Includes positive evidence of mutagenicity, 
developmental effects, reproductive effects, 
other chronic effects, and neurotoxicity. 

F-LC50 Fish LC50 The concentration of a chemical in water 
that causes death in %0% of the fish tested 
in a 96-h test. 

NOEL Fish NOEL The highest dosage administered that does 
not produce observable toxic effects, 
estimated from LC50 data. 

BOD Biological oxygen 
demand 

The time required to biodegradate a 
chemical such that its BOD in water is 
reduced by half. 

Hydro Hydrolysis half life The time required for the amount of a 
chemical to be reduced by half through 
hydrolysis reaction in water, at pH 7. 

BCF 
 
 

Aquatic 
bioconcetration factor 

The ratio of the concentration of a chemical 
in an aquatic organism to that in water at 
steady-state. 

RWF Amount released into 
the environment, air 
and water. 

The amount of annual releases or transfer 
of chemicals into the environment. Modified 
by logarithmic transformation. 

Table 4.14 – Toxicological and exposure endpoints. 
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ID Substance LD50 LC50 NCAR NTOX F-LC50 
1 1,1,1-Trichloroethane 11240 2000 0 3 48 
2 1,1,2-Trichloroethane 150 2000 2 1 7 
3 1,2,4-Trichlorobenzene 300 1100 0 2 3 
4 1,2,4-Trimethylbenzene 5000 3655 0 0 8 
5 1,2-Dichlorobenzene 1400 1700 0 1 0.55 
6 1,2-Dichloroethane 780 2063 4 4 136 
7 1,2-DichIoropropane 3000 5554 0 0 127 
8 1,3-Butadiene 3210 128850 4 4 4 
9 1,4-Dichlorobenzene 3790 1100 4 1 34 

10 1,4-Dioxane 3150 6368 4 0 10352 
11 2,4-D 275  4 3 71 
12 2,4-Dinitrophenol 30  0 3 11 
13 2,4-Dinitrotoluene 268  4 3 24 
14 2-Ethoxyethanol 1400 3185 0 3 16305 
15 2-Methoxyethanol 950 2590 0 3 22655 
16 2-Nitropropane 725 600 4 3 5 
17 4,4'-Isopropyldenediphenol 2500 200 0 0 5 
18 4,4'-Methylenedianiline 185 163 4 1 45 
19 4-Nitrophenol 620 50 0 2 41 
20 Acetaldehyde 1930 1500 4 0 34 
21 Acetone 3000 42000 0 1 7200 
22 Acetonitiile 3800 15000 0 3 1640 
23 Acrylamide 107 1000 4 4 109 
24 Acrylic acis 193 1200 0 1 186 
25 Acrylonitrile 78 576 4 3 10 
26 Allyl chloride 425 926 2 3 72 
27 Alluminium (fume or dust) 9999 500 0 0  
28 Ammonia 350 2377 0 1 2 
29 Ammonium nitrate 4500  0 1 800 
30 Ammonium sulfate 3000  0 0 4000 
31 Aniline 250 306 0 1 108 
32 Anthracene 17000 250 1 1 0.01 
33 Antimony compounds 20000  0 2 833 
34 Arsenic compounds 8  5 3 32 
35 Asbestos (friable) 9999 9999 5 1  
36 Barium compounds 132  0 2 200 
37 Benzene 4700 17500 5 3 19 
38 Benzoyl chloride 2460 163 0 2 35 
39 Biphenyl 3280 25 0 2 2 
40 Bis(2-ethylhexyl) adipate 9110  0 1 0.35 
41 Bromomethane 214 780 0 2 11 
42 Butyl acrylate 3730 2730 0 0 2 
43 Butyl benzyl phthalate 2330  0 1 43 
44 Butyraldehyde 2490 7547 0 0 32 
45 Cadmium compounds 88 306 4 3 0.1 
46 Carbon disulfide 2780 1604 0 4 694 
47 Carbon tetrachloride 2800 19052 4 3 41 
48 Carbonyl sulfide  10000 0 1 2685 
49 Catechol 260  0 0 9 
50 Chlorine 8910 34 0 1 0.34 
51 Chlorine dioxide 292 130 0 2 0.17 
52 Chlorobenzene 1440 1100 0 2 17 
53 Chloroethane 7500 29 0 0 16 
54 Chloroform 908 5720 4 3 71 
55 Cloromethane 1800 3063 2 3 550 
56 Chlorophenols [o] 261 100 0 0 19 
57 Cloroprene 260 3253 0 5 2 
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ID Substance LD50 LC50 NCAR NTOX F-LC50 
58 Chlorothalonil 6000 7 0 2 0.05 
59 Chrominum compounds 97  5 1 33 
60 Cobalt compounds 55  0 1 0.38 
61 Copper compounds 300  0 2 0.33 
62 Cresol (mixed isomers) 760 50 0 1 13 
63 Cumene 2910 8000 0 2 6 
64 Cumene hydroperoxide 382 200 1 0 62 
65 Cyclohexane 29820 500 0 0 5 
66 Decabromdiphenly oxide 2570  0 2 0.06 
67 Di(2-ethylhexyl) phthalate 30000  4 4 1 
68 Diaminotoluene (mixed isomers) 13000  0 1 0.93 
69 Dibutyl phthalate 260 100 4 2 37 
70 Dichlorobenzene (mixed isomers) 9000 500 0 3 1 
71 Dichloromethane 2600 1100 0 1 0.54 
72 Diethanolamine 1600 17400 4 1 330 
73 Diethyl phthalate 710 484 0 0 4710 
74 Dimethyl phthalate 9000 537 0 0 32 
75 Epichlorohydrin 2400 500 0 0 121 
76 Ethylbenzene 40 500 4 4 35 
77 Ethylene 5460 5000 0 3 11 
78 Ethylene glycol 9999 950000 0 1 14 
79 Ethylene oxide 6610 1000 0 1 227634 
80 Formaldehyde 270 835 4 5 474 
81 Freon 113 260 480 4 3 24 
82 Glycol ethers 43000 10000 0 1 290 
83 Hexachloro-1,3-butadiene 1200 850 0 0 1490 
84 Hexachlorobenzene 102 35 2 3 0.09 
85 Hexachloroethane 4000 308 4 4 22 
86 Hydrochloric acid 4970 10000 2 3 1 
87 Hydrogen cyanide 900 277 0 1 19 
88 Hidrogen flouride 4 18 0 1 1385 
89 Hydroquinone 50 86 0 4 265 
90 Isobutyraldehyde 320  0 1 141 
91 Isopropyl alcohol 2810 6681 0 1 41 
92 Lead compounds 3600 32000 5 2 8623 
93 m-Xylene 1500  4 4 5 
94 Maleic anhydride 5000 4550 0 2 16 
95 Manganese compounds 465 1000 3 1 2963 
96 Methanol 615  0 3 150 
97 Methyl ethyl ketone 5628 64000 0 1 29400 
98 Methyl isobutyl ketone 2737 6766 0 4 3220 
99 Methyl methacrylate 2080 5672 0 2 505 

100 Methyl tert-butyl ether 8000 7500 0 3 259 
101 Methylenebis (phenylisocyanate) 4000 23568 0 0 786 
102 Molybdenum trioxide 2200 5 0 0 66 
103 N,N-Dimethylaniline 125  0 2 370 
104 n-Butyl alcohol 1410 1225 0 2 65 
105 Di-n-OctylPhthalate 790 8000 0 1 1860 
106 N-nitrosodiphenylamine 1650  4 1 1 
107 Naphtalene 2200 30 1 2 6 
108 Nikel compuonds 350  5 3 27 
109 Nitric acid 500 65 0 0 26 
110 Nitrobenzene 640  0 2 119 
111 o-Xylene 5000 4550 0 3 16 
112 p-Cresol 207 50 0 0 25 
113 p-Xylene 5000 4550 0 2 2 
114 Phenol 530 46 0 2 34 
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ID Substance LD50 LC50 NCAR NTOX F-LC50 
115 Phosphoric acid 1530 14 0 0 70 
116 Phosphorus (yellow or white) 3  0 2 0.02 
117 Phthalic anhydride 2000 1000 0 2 364 
118 Picric acid 30  0 0 170 
119 Polychlorinated biphenyls 1300  4 3 3 
120 Propionaldehyde 1200 4581 3 1 44 
121 Propylene 9999 10500 0 0 5 
122 Propylene oxide 690 1740 4 5 306 
123 Pyridine 1580 1000 0 1 100 
124 Sec-butylalcohol 6480 8000 0 0 3670 
125 Styrene 1000 2528 4 3 4 
126 Sulfuric acid 2140 14 0 1 31 
127 Terephthalic acid 18800  0 1 29 
128 Tert-butyl alcohol 3500 8000 0 0 1954 
129 Tetrachloroethylene 8100 5200 4 4 17 
130 Thorium dioxide 1140  0 0  
131 Titanium tetrachloride 1000 7 0 0 25 
132 Toluene 5050 6675 0 2 34 
133 Toluene-2,4-diisocyanate 5800 10 4 1 53 
134 Trichloroethylene 2402 8450 4 4 44 
135 Vinyl acetate 1613 3680 0 1 100 
136 Vinyl chloride 500 100 5 4 143 
137 Vinylidene chloride 200 6350 2 3 108 
138 Xylene (mixed isomers) 4300 6350 0 3 13 
139 Zinc (fume or dust) 9999 1000 0 3  
140 Zinc compuonds 7950  0 0 17 
141 Alachlor 1065  0 0 5 
142 Atrazine 1750 540 0 0 16 
143 Butylate 4659  0 0 7 
144 Captan 7500 168 0 4 0.2 
145 Carbaryl 500 25000 0 4 8 
146 Chlorpyrifos 151  0 0 2 
147 Cyanazine 261 230 0 0 18 
148 1,3-Dichloropropene 140 996 4 1 0.24 
149 EPTC (ethyl dipropylthiocarbante) 916 4062 0 0 27 
150 Glyphosate 4873  0 0 600 
151 Malathion 570 6 0 0 0.1 
152 Maneb 4400  0 4 2 
153 Metam Sodium (MeNHCS2Na) 285 888 0 0 0.39 
154 Methyl Parathion 14 3 0 0 9 
155 Metolachlor 2780  0 0 15 
156 Metribuzin 7500  0 0 80 
157 Terbufos (tBuSCH2SP(=S)(Oet)2 3 1 0 0 0.01 
158 Trifluralin 500 47 0 3 0.11 

Table 4.15a – Original data of 140 chemicals. 
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ID Substance NOEL BOD Hydro BCF RWF 
1 1,1,1-Trichloroethane 7 503 30 1.5 8.94 
2 1,1,2-Trichloroethane 1 503 30 1.2 3.59 
3 1,2,4-Trichlorobenzene 0.2 550 1000 2.9 3.97 
4 1,2,4-Trimethylbenzene 0.68 502 1000 2.3 5.4 
5 1,2-Dichlorobenzene 0.05 6 1000 2.3 3.1 
6 1,2-Dichloroethane 34 508 30 0.6 5.5 
7 1,2-DichIoropropane 23 503 30 1.3 4.03 
8 1,3-Butadiene 1 502 1000 1 5.56 
9 1,4-Dichlorobenzene 3 6 1000 2.3 3.87 

10 1,4-Dioxane 2588 520 1000 -1 1 
11 2,4-D 6 503 1000 2.4 3.08 
12 2,4-Dinitrophenol 3 550 1000 0.6 2.04 
13 2,4-Dinitrotoluene 6 550 1000 1 4.37 
14 2-Ethoxyethanol 4076 9 1000 -1.3 4.82 
15 2-Methoxyethanol 5664 9 1000 -1.5 3.05 
16 2-Nitropropane 1 550 1000 0.2 2.35 
17 4,4'-Isopropyldenediphenol 0.42 8 1000 2.2 1.88 
18 4,4'-Methylenedianiline 11 8 1000 0.7 1 
19 4-Nitrophenol 10 550 1000 -0.1 6.07 
20 Acetaldehyde 9 7 1000 -1 9.14 
21 Acetone 1800 7 1000 -1 6.79 
22 Acetonitiile 410 5 1 -1.1 5.31 
23 Acrylamide 27 9 360 -1.4 6.76 
24 Acrylic acis 47 8 1000 -0.5 6.14 
25 Acrylonitrile 3 5 1 -1.6 2.09 
26 Allyl chloride 18 6 2 -1 9.65 
27 Alluminium (fume or dust)  500 9999  7.98 
28 Ammonia 0.09 9 1000 -1.2 10.12 
29 Ammonium nitrate 40 9999 9999 -2 5.15 
30 Ammonium sulfate 200 9999 9999 -2 1.65 
31 Aniline 27 9 1000 0 3.41 
32 Anthracene 0 502 1000 3.2 2.24 
33 Antimony compounds 42 9999 9999 1.6 3.92 
34 Arsenic compounds 2 9999 9999 2.5 4.83 
35 Asbestos (friable)  9999 9999 1 7.06 
36 Barium compounds 10 9999 9999 1 4.04 
37 Benzene 4 10 1000 1.2 1.65 
38 Benzoyl chloride 7 9 1000 1.2 4.79 
39 Biphenyl 0.12 9 1000 2.8 2.59 
40 Bis(2-ethylhexyl) adipate 0.02 9 1000 4.2 2.55 
41 Bromomethane 3 6 30 0.3 4.26 
42 Butyl acrylate 0.31 9 50 1.4 1.85 
43 Butyl benzyl phthalate 2 8 400 3.5 8.42 
44 Butyraldehyde 8 7 1000 0 6.71 
45 Cadmium compounds 0 9999 9999 3.5 2.9 
46 Carbon disulfide 174 9999 1000 0 5.25 
47 Carbon tetrachloride 5 503 30 1.8 5.4 
48 Carbonyl sulfide 671 9999 1000 -0.7 7.06 
49 Catechol 2 9 1000 0 6.03 
50 Chlorine 0.02 9999 1 1 1.87 
51 Chlorine dioxide 0.01 5 1  3.97 
52 Chlorobenzene 2 6 1000 1.8 1 
53 Chloroethane 4 6 30 0.5 5.28 
54 Chloroform 18 503 30 1 2.61 
55 Cloromethane 138 6 30 0 6.33 
56 Chlorophenols [o] 3 6 1000 1.3 4.91 
57 Cloroprene 0.56 503 2 0.5 5.31 
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ID Substance NOEL BOD Hydro BCF RWF 
58 Chlorothalonil 0 550 1 3.7 2.44 
59 Chrominum compounds 2 9999 9999 2.3 1.05 
60 Cobalt compounds 0.02 9999 9999 1.7 3.92 
61 Copper compounds 0.02 9999 9999 -1 1.66 
62 Cresol (mixed isomers) 3 9 1000 1 3.23 
63 Cumene 0.49 502 1000 2.5 1.84 
64 Cumene hydroperoxide 11 9 1000 1.3 8.52 
65 Cyclohexane 0.39 502 1000 2.3 1.53 
66 Decabromdiphenly oxide 0 550 1000 3.9 2.81 
67 Di(2-ethylhexyl) phthalate 0.08 9 400 3.6 3.42 
68 Diaminotoluene (mixed isomers) 0.05 9 400 3.9 5.98 
69 Dibutyl phthalate 9 550 1000 0.5 7.54 
70 Dichlorobenzene (mixed isomers 0.05 9 400 3.6 7.08 
71 Dichloromethane 0.05 6 1000 2.3 4.94 
72 Diethanolamine 83 508 30 0.4 6.9 
73 Diethyl phthalate 1178 9 1000 -2.1 7.96 
74 Dimethyl phthalate 5 9 400 1.5 7.69 
75 Epichlorohydrin 30 9 400 0.4 1 
76 Ethylbenzene 9 510 30 -0.5 1 
77 Ethylene 1 10 1000 2.1 9.73 
78 Ethylene glycol 3 10 1000 0.2 5.24 
79 Ethylene oxide 56909 9 1000 -2.5 6.17 
80 Formaldehyde 118 510 12 -1.1 2.82 
81 Freon 113 6 502 1000 0.2 3.24 
82 Glycol ethers 73 503 30 0.7 5.54 
83 Hexachloro-1,3-butadiene 373 9 1000 0 5.72 
84 Hexachlorobenzene 0 503 2 3.6 3.03 
85 Hexachloroethane 1 550 1000 3 6.16 
86 Hydrochloric acid 0.13 503 30 2.2 9.33 
87 Hydrogen cyanide 0.95 10 1000 0.5 8.67 
88 Hidrogen flouride 346 9999 1000 -0.7 7.26 
89 Hydroquinone 13 9999 1000 -0.4 5.03 
90 Isobutyraldehyde 35 9 1000 -0.2 4.93 
91 Isopropyl alcohol 10 7 1000 -0.2 3.56 
92 Lead compounds 2156 9 1000 -0.5 3.14 
93 m-Xylene 0.26 9999 9999 1.8 1.57 
94 Maleic anhydride 2 10 1000 2.1 7.48 
95 Manganese compounds 741 8 1000 -0.7 0.6 
96 Methanol 8 9999 9999 1 4.66 
97 Methyl ethyl ketone 7350 9 1000 -1.4 3.3 
98 Methyl isobutyl ketone 805 7 1000 -0.5 4.41 
99 Methyl methacrylate 126 7 1000 0.3 2.51 

100 Methyl tert-butyl ether 65 9 1000 0.5 5.37 
101 Methylenebis (phenylisocyanate) 197 508 1000 0 8.19 
102 Molybdenum trioxide 6 550 1000 2.3 5.01 
103 N,N-Dimethylaniline 19 9999 9999  1 
104 n-Butyl alcohol 12 513 1000 1.3 3.72 
105 Di-n-OctylPhthalate 465 9 1000 0 6.97 
106 N-nitrosodiphenylamine 0.13 8 1000 2.1 4.55 
107 Naphtalene 0.59 9 1000 2.1 3.6 
108 Nikel compuonds 1 9999 9999 1.6 3.76 
109 Nitric acid 1 9999 1000 -0.3 7.33 
110 Nitrobenzene 30 9 1000 0.9 9.11 
111 o-Xylene 2 10 1000 1.7 3.45 
112 p-Cresol 6 9 1000 1 4.69 
113 p-Xylene 0.2 10 1000 2.1 7.06 
114 Phenol 8 9 1000 0.6 1 
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ID Substance NOEL BOD Hydro BCF RWF 
115 Phosphoric acid 4 9999 1000 -0.9 0.96 
116 Phosphorus (yellow or white) 0  0 1 9.36 
117 Phthalic anhydride 91 550 1000 0.4 1.74 
118 Picric acid 41 550 1000 1.1 7.61 
119 Polychlorinated biphenyls 0.14 550 1000 4.2 5.72 
120 Propionaldehyde 11 7 1000 -0.5 4.06 
121 Propylene 1 10 1000 0.8 2.32 
122 Propylene oxide 77 9 1000 -0.8 8.81 
123 Pyridine 25 9 1000 -0.2 6.97 
124 Sec-butylalcohol 918 9 1000 -0.2 8.46 
125 Styrene 0.44 10 1000 1.9 1 
126 Sulfuric acid 2 9999 1000 -1.3 1 
127 Terephthalic acid 7 550 1000 0.7 1 
128 Tert-butyl alcohol 488 508 1000 -0.5 1 
129 Tetrachloroethylene 2 503 1000 1.6 1 
130 Thorium dioxide  9999 9999  1 
131 Titanium tetrachloride 1 9999 9999  1 
132 Toluene 4 10 1000 1.7 1 
133 Toluene-2,4-diisocyanate 13 550 1000 0.8 1 
134 Trichloroethylene 8 503 1000 1.3 1 
135 Vinyl acetate 25 9 1000 -0.1 1 
136 Vinyl chloride 36 6 1000 0.6 1 
137 Vinylidene chloride 27 503 1000 0.9 1 
138 Xylene (mixed isomers) 1 10 1000 1.9 1 
139 Zinc (fume or dust)  500 9999 -2 1 
140 Zinc compuonds 0.86 9999 9999 3 1 
141 Alachlor 0.51 503 2 2 5.67 
142 Atrazine 3 503 1000 1.3 2.23 
143 Butylate 0.54 518 1000 2.5 5.07 
144 Captan 0.05 503 30 0.9 8.72 
145 Carbaryl 1 8 1000 1.4 5.76 
146 Chlorpyrifos 0.12 503 1000 3.7 6.67 
147 Cyanazine 5 503 1 0.9 4.12 
148 1,3-Dichloropropene 0.06 508 2 1 4.28 
149 EPTC (ethyl dipropylthiocarbante) 3 9 1000 2.1 1 
150 Glyphosate 150 9 1000 -3.7 3.98 
151 Malathion 0.01 9 1000 1.8 3.18 
152 Maneb 0.09    5.1 
153 Metam Sodium (MeNHCS2Na) 0.1 10 1 0.1 7.44 
154 Methyl Parathion 0.88 0 1000 2.1 6.55 
155 Metolachlor 1 503 2 2.4 3.39 
156 Metribuzin 20 508 1000 0.8 4.05 
157 Terbufos (tBuSCH2SP(=S)(Oet)2 0 508 15 3.3 1 
158 Trifluralin 0.01 503 30 2 1 

Table 4.15b – Original data of 140 chemicals. 
 
 
4.4.2 Pre-processing method comparison 

Since Hasse method is very sensitive to non-discrete values, a complete 
evaluation by HDT requires an adequate pre-processing to establish a 
suitable data matrix, as well as a post-processing to correctly extract 
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information and decisions. To reduce its sensitivity to uncertainty the data 
have been firstly transformed using decimal logarithms. Being the Hasse 
diagram based on the assumption that the higher the numerical value of 
a criterion, the higher is the hazard associated to that criterion, an 
inverse transformation has been applied to those criteria whose low 
values correspond to high hazard (rodent oral LD50, rodent inhalation 
LC50, fish LC50 and fish NOEL). Moreover, the missing data (empty 
cells in the matrix) have replaced with the highest in their relative column. 
In spite of the logarithmic transformation performed, the ranking analysis 
performed on the all 10 criteria provided a very complex Hasse diagram: 
it is a four levels and is not here shown as, being a not readable diagram 
is useless. To reduce much more its sensitivity to non-discrete values, 
Halfon and Brüggemann removed all the decimal significant digits. 
Notwithstanding this data simplification, the obtained Hasse diagram, 
shown in Figure 4.9, is still quite complex. 
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Figure 4.9 - Hasse diagram developed on log-transformed data with zero digits. 
 
The diagram has five levels and it is not readable, since its complexity is 
still not resolved. In fact, it is characterized by a high number of 
incomparabilities (23338 over 24806 comparisons). To resolve the 
complexity that characterize Hasse diagrams developed on data 
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described by many criteria, Halfon and Brüggemann proposed a 
classification of the data, i.e. dividing the range of each property in three 
equal classes, roughly corresponding to good, bad and average. When 
this classification is performed several chemicals take the same score 
and thus the obtained diagram, shown in Figure 4.10 is more sprayed. 
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Figure 4.10 - Hasse diagram developed on classified data. 

 
The Hasse diagram is now organised in 10 levels and as expected, the 
degeneracy has significantly increased, being the number of 
equivalence classes equal to 146. Thus, each variable has been 
transformed from quantitative values into hazard classes by an arbitrary 
classification.  
As highlighted in chapter 2 a very useful pre-processing tool is the one 
provided by rank-order transformation, i.e. by replacing the original data 
with a reduced number of order statistics for example, deciles or 
quartiles. In such a way a high number of ties occur. Obviously the 
original quantitative information is lost, however when the aim is to 
explore the “main features” of multivariate data, or to perform a 
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preliminary analysis before a more complete one, replacing the original 
data by quantiles may be useful to reveal qualitative features, which 
could be otherwise submerged by quantitative information. Thus, the 
logarithmic transformed data have been replaced by deciles, quartiles 
and binary data and analyzed by Hasse diagram technique. The 
corresponding diagrams are shown in Figure 4.11, 4.12 and 4.13 
respectively. 
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Figure 4.11 - Hasse diagram developed on deciles data. 
 
Both deciles and quartile rank transformations provide pretty complex 
diagram, with five and six levels, respectively, similar to that obtained by 
log-transformed data with zero digits. The number of comparabilities 
increases from 639 for decile data up to 1201 for quartile data, however 
many ranking relations are not solved, being the number of 
incomparabilities equal to 23528 and 22406, for decile and quartile, 
respectively. 
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Figure 4.12 - Hasse diagram developed on quartile data. 
 
Being the number of chemicals compared huge and the number of 
criteria accounted pretty high, to better understand the data and to 
obtain a further simplification of the Hasse diagram the binary 
transformation is required. The Hasse diagram on binary data (Figure 
4.13) is now more readable, being organised in nine levels. It is 
characterised by a higher degeneracy (118 equivalence classes) with 
respect to the ones developed on deciles and quartiles; the number of 
comparabilities increases up to 3278 and the incomparabilities decrease 
to 18378. 
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Figure 4.13 - Hasse diagram developed on binary data. 

 
The main differences among the diagrams obtained with different kinds 
of rank-order transformations, in terms of number of levels, number of 
equivalence classes, maximals, minimals, isolated elements, 
comparabilities and incomparabilities are summarize in Table 4.16. 
 
 Levels N.Equiv. Max Min Iso Comp. Incomp. 

Logarithmic (0 digits) 5 158 45 40 8 734 23338 

Hazard classes 10 146 20 8 0 2081 20672 

Deciles 5 158 44 53 9 639 23528 

Quartiles 6 157 31 20 0 1201 22406 

Binary 9 118 7 4 0 3278 18378 

Table 4.16 – Difference among Hasse diagrams. 
 
To evaluate the quality of the ranking analysis and to better compare the 
diagrams obtained, ranking indices have been calculated and their 
values are collected in Table 4.17. 
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 D DbyR T div χ StR P Cx Cx’ 

Log.(0 digits) 0.00 0.06 0.03 0.33 0.06 0.91 0.94 0.94 0.12 

Haz. classes 0.08 0.16 0.06 0.13 0.17 0.65 0.83 0.83 0.33 

Deciles 0.00 0.05 0.03 0.33 0.05 0.92 0.95 0.95 0.10 

Quartiles 0.01 0.10 0.03 0.19 0.10 0.83 0.90 0.90 0.20 

Binary 0.25 0.23 0.07 0.12 0.26 0.47 0.74 0.74 0.52 

Table 4.17 – Numerical values of ranking indices calculated for different rank-
order transformations. 
 
It can be highlighted that no degeneracy is provided in diagrams 
developed on logarithmic and decile values, whereas a little degeneracy 
occurs when quartile data are used and increases from the hazard class 
values to binary data. The discrimination power by ranking (DbyR) and 
the selectivity index (T) reveal that the capability of discriminating 
elements and to providing a unique orientation from “good” to “bad“ of 
the binary data diagram is pretty greater than the other diagrams, 
whereas the diversity (div) is lower than the other diagrams, since the 
number of incomparabilities is lower. Moreover, the binary data diagram 
provides a lower value of the stability indices (StR and P) and complexity 
index (Cx) and a higher value of the comparability degree (χ) than the 
diagrams resulted from the other transformations, since it is the one 
which better resolves ranking relations among the elements. Finally, the 
complexity Cx’ providing information related to the balance between 
comparabilities and incomparabilities takes a higher value for the binary 
diagram than for the others. 

Being the aim of the study to define a priority list of chemical, it is of 
great interest to analyse the elements selected as maximal, since these 
are the ones of highest hazard to be deeply investigated. 
The binary diagram selects as maximals the following 7 chemicals, out 
of 158, which are equally hazardous, even if for different reasons:  
arsenic compound (34), asbestos (35), cadmium compound (45), m-
xylene (93), phosphorus (116), polychlorinated biphenyl (119) and 
maneb (152). Thus, even if the chemicals on the top level can not be 
compared with each other, these 7 chemicals can be compared with the 
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chemicals in the lower levels. It must be pointed out that phoshorus is 
identified as a priority element because it has high LD50 and its missing 
values for inhalation LC50 and BCF have been replaced with the 
maximum values. A similar reasoning should be applied on maneb, 
which is missing for inhalation LC50, BOD, hydrolisis and BCF. 
Comparing the binary results with the ones obtained by a hazard classes 
definition reveals that the 7 chemicals selected by binary diagram as 
priority chemicals are within the 20 selected as the more dangerous by 
the hazard classes transformation; the 13 maximal elements selected in 
addition to the 7 above identified are the following: 1,2-dichloroethane 
(6), aluminium (27), butyl benzyl phthalate (43), chloroprene (57), di(2-
ethylhexyl) phthalate (67), ethylene (77), hexachloroethane (85), 
hydrochloric acid (86), hydroquinone (89), propylene oxide (122), captan 
(144), catbaryl (145), terbufos (157). 
 
The analysis performed confirms that broad order statistics seems to be 
a suitable pre-processing tool to support Hasse diagram technique, since 
it provides a satisfactory solution both for noise and measurements 
errors reduction and element reduction. The ordinal relations among the 
elements are preserved and it does no subjective choices, like classes 
definitions, are required. 

 
 
4.4.3 Sensitivity analysis 

Since the knowledge of which criteria are important to rank the analysed 
chemicals is equally important as the knowledge of the ranking, a 
sensitivity analysis has been performed in order to find out the influence 
of each attribute on the ranking. The sensitivity analysis performed on 
the binary rank-transformed data by the backward sensitivity method 
proposed in chapter 2 provides the following criteria importance order: 
 

RWF > BCF > Oral Rodent LD50 > NTOX > BOD > Fish LC50 > NCAR 
> Inhalation Rodent LC50 > Hydrolysis > NOEL 
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Thus, RWF and BCF are the more important and influent criteria, 
whereas NOEL does not seem very informative and exhibit a low 
influence in the chemical ranking. To confirm the obtained results, they 
have been compared with the ones obtained by Halfon and 
Brüggemann. The sensitivity analysis performed by Halfon and 
Brüggemann on the hazard classes by the W matrix method provided 
the following criteria importance order: 

RWF > NCAR > BCF > Oral Rodent LD50 > BOD > Hydrolysis > 
Inhalation Rodent LC50 > NTOX > Fish LC50 > NOEL 

Obviously, some discrepancies among the sensitivity results obtained by 
the backward stepwise technique on binary data and the W matrix 
method on hazard classes data are expected. The importance of RWF 
obtained from the backward analysis is confirmed by the W matrix 
method. While RWF is still the most importance criterion, NCAR is now 
more important than all the other criteria. Other differences concern the 
importance of NTOX and Fish LC50 which are much more relevant 
according to the backward analysis.  

 

This study has been presented to give evidence of the important role 
played by partial ranking methods in environmental decision strategies. 
Moreover, it has been pointed out the opportunity to support Hasse 
diagram analysis by adequate pre-processing statistical techniques, like 
broad order statistics in order to make partial ranking analysis able to 
process huge datasets described several criteria. 
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4.5 Sensory data analysis 
The success and profit of a company often depends on its capability of 
launching a new product able to satisfy customer sensorial 
requirements. This is of particularly relevance in the cosmetic field, being 
the cosmetic product unequivocally characterised by the gratification the 
customer received from the product application or use. Sensory 
evaluation is a dynamic field concentrating on the utilization of humans 
for the measurement of sensory perceptions and/or their effect on 
product characteristics. It brings information on products regarding their 
perception through the 5 senses: sight, hearing, touch, taste and smell. 
The challenge is to understand customer perception and behaviour in 
order to adjust the product to meet consumer expectations. New market 
approaches are now available to input consumer perception in marketing 
decisions. Many companies have now realized the enormous creative 
potential for product development and scale-up, marketing insight and 
quality assurance their in-house descriptive sensory teams. On the other 
hand, companies without the time and/or resources to develop and use 
in-house research look to an outside tester to help facilitate internal 
production processes. Sensory testing companies often are called in if 
development time is short, quality issues have surfaced or a supplier 
opportunity is imminent. They then can review the data, understand and 
report the outcomes of individual scenarios, and offer educated 
suggestions on the next step to take. Descriptive testing can assess an 
existing category, investigate across-the-board applications, explore 
trend applications and/or measure the attributes behind consumer liking. 
Using trained or consumer panels gives researchers access to 
consumer reaction, both informal and structured at the very early stages 
of product development. Such input can be obtained easily, quickly, and 
at little cost. By sensory evaluation, scientists are no longer compelled to 
develop early product prototypes with attributes that rely heavily on their 
own perceptions. Early consumer input, even though it is largely 
qualitative and non-projectable, offers a prediction of the prototype's 
acceptability. Sensory research is thus an evaluative tool, the use of 
which enables laboratory personnel to determine product attributes that 
are fundamental to the development of the successful cosmetic product 
in a particular category. Sensory analysis make use of trained or 
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customer panels to test new products; developing a professional 
descriptive panellist is a lengthy process requiring education as well as 
experience. Potential panellists are usually selected from approximately 
100 applicants: they are trained for six to seven months and met three to 
four days a week to learn how to evaluate products. A trained panel 
should be composed by 12 – 15 persons who evaluate each product 
three times. Each individual evaluation is judged according to 
reproducibility and uniformity with respect to the other panellists. It is a 
common practice that the panel has to evaluate defined sensorial 
properties, related to the product use, appearance, fragrance…. Once 
performed the sensory analysis, the panel uniformity should be 
evaluated by objective methods able to detect the 
agreement/disagreement degree among the panellist, and identify 
panellist providing singular sensory evaluations. If the panel training can 
be considered satisfactory and the panel sensory evaluation reliable, the 
tested prototypes can be ranked  and their differences analysed. 

Total and partial ranking analysis has been performed on shampoo 
sensory data provided by a cosmetic industry with the following 
purposes: 

1. single property perception and panel uniformity assessment 

2. global judge panel analysis 

3. ranking six prototypes and detecting the main differences among 
them 

 
 
4.5.1 Shampoo sensory data 

The dataset is composed by 6 shampoos, identified as A, B, C, D, E and 
F evaluated by 20 trained panellists. The shampoos have been tested by 
the panellists according to 10 properties, some of which specifically 
related to the shampoos, to the hair and to the shampoo general quality. 
The properties accounted in the analysis performed are shown in Table 
4.18: 
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Each property has been evaluated by the panellists with a score, taking 
values in the range 1 (if the property is totally absent) to 10 (if the 
property is totally expressed). 
 

Shampoo Hair General 

Consistency Comb facility before drying Cleanliness maintenance  

Rising power Comb facility after drying Overall agreeableness 

Fragrance Electricity   

 Volume  

 Brightness  

Table 4.18 – Shampoo properties. 
 
Cosmetic expert considerations have been taken into account and each 
property has been weighted according to its importance. The properties 
setting and the weights are collected Table 4.19. 

 

 Property  Function Weight 

 Consistency  Triangular 0.082 

 Rising power   Linear 0.082 

 Fragrance  Triangular 0.055 

 Comb facility before drying  Linear 0.110 

 Comb facility after drying  Linear 0.110 

 Electricity  Inverse linear 0.096 

 Brightness  Linear 0.082 

 Volume  Linear 0.109 

 Cleanliness maintenance  Linear 0.137 

 Overall agreeableness  Linear 0.137 

Table 4.19 – Criterion setting. 
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The data matrix analysed is a three-way matrix, shown in Figure 4.14. 
Two axes represent the shampoos and sensory properties, the third axis 
the panellist votes. Thus, the resulted matrix is a 6x10x20 matrix. Three 
unfolding have been performed and ranking analysis has been applied 
on the three matrices obtained. A first unfolding has been performed in 
order to analyse the panel uniformity on each single property and to 
detect property not well perceived (Step A). Then, the global panel 
uniformity has been evaluated taking into account panellists overall 
agreement by using desirability scores (Step B). Finally, the averaged 
judge votes have been account in order to compare the shampoos 
according to the ten properties evaluated by the sensory analysis and 
detect their main differences (Step C). 
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Figure 4.14 – Three-way matrix unfolding. 
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4.5.2 Property perception and judge uniformity assessment 

Since the sensory analysis was performed by trained panellists, it was of 
interest to evaluate their similarity in perceiving shampoo properties. 
Each individual evaluation has been analysed according to its uniformity 
with respect to the other panellists. To find out the agreement degree 
among the panellists on each property accounted in the shampoo 
evaluation, a partial ranking analysis has been performed comparing the 
20 panellists according to the way they perceived the six shampoos.  
An example is here illustrated as far as concerns the Hasse diagram 
resulted by the analysis of the panellists consistency perception. 
The panellists votes for the consistency quality of the six shampoos are 
collected in Table 4.20. 
 

 Shampoo 
Panellist A B C D E F 

1 8 7.5 5 5 6 6 
2 6.5 6 3.5 3.5 4.5 4.5 
3 6.5 6 3.5 3.5 4.5 4.5 
4 8 7 5 5 6 6 
5 8 7 5 5 6 6 
6 8 7 5 5 6 6 
7 8 7 5 5 6 6 
8 8 7 5 5 6 6 
9 8 7 5 5 6 6 

10 8 7 5 5 6 6 
11 8 7 5 5 6 6 
12 6.5 6 3.5 3.5 4.5 4.5 
13 6.5 6 3.5 3.5 4.5 4.5 
14 6 6.5 3 3 4 4 
15 6 6.5 3 3 4 4 
16 6 6.5 3 3 4 4 
17 6 6.5 3 3 4 4 
18 6 6.5 3 3 4 4 
19 8 7 5 5 6 6 
20 4 3 1 1 2 2 

Average 7 6.5 4 4 5 5 

Table 4.20 – Panellist votes on shampoo consistency. 
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The Hasse diagram obtained is illustrated in Figure 4.15. The ranking 
analysis performed on the judge panel allows to highlight the degree of 
agreement/disagreement among the judges. 
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Figure 4.15 – Consistency sensory panel evaluation by Hasse diagram. 
 

The panellists are sprayed in three main groups: panellists 4, 5, 6, 7, 8, 
9, 10, 11, 19 felt the shampoo consistency tested on the six samples in a 
higher way than the other panellists, excepted for panellist 1 who 
overestimates the shampoo consistency marking more all the 
shampoos. A total agreement exists among panellists 2, 3, 12 and 13 as 
well as among panellists 14, 15, 16, 17 and 18. However the two groups 
are in disagreement since the panellists 2, 3, 12 and 13 felt shampoo 
consistency in higher way than panellists 14, 15, 16, 17 and 18 excepted 
for shampoo B, thus a contradictions exists among the two group votes. 
Panellist 20 is a minimal and he felt shampoo consistency in a fewer 
way than all the others. The analysis performed allows to detect the 
presence of two panellists who perceived the consistency sensory 
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property in a singular way with respect to all the others: this result may 
suggests not to account for their votes in ranking the shampoos or to 
train them on the consistency property detection. Before final decision 
are taken, the panellists behaviour has been analysed on the other 
sensory properties. The Hasse diagrams developed for the other 
properties are collected in Table 4.21. 
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Table 4.21 – Hasse diagrams of 20 panellists. 
 
The analysis performed confirms the existence of three main groups of 
panellists. Panellists 6, 7, 8, 9, 10, 19 being always in agreement 
constitute a well defined group; they felt the sensory properties in a 
higher way than the panellists 15, 16, 17 and 18 who belong to another 
unanimous group. The group composed by panellists 2, 3, 12 and 13 is 
mostly located between the two previous ones: the panellists belonging 
to this group frequently mark lower than the first group and higher than 
the second group. Moreover, the three groups identified are mostly 
comparable, excepted for the consistency and comb facility after drying, 
meaning that their disagreement is mainly a quantitative disagreement, 
since the first group provided higher votes than the second and the 
second higher than the third. Being the aim of the analysis to evaluate 
the panel uniformity, a major importance should be the attached to those 
disagreement which are not only quantitative but also qualitative. This is 
the case of panellists 1, 4 and 20. The first one is often a singleton and 
shows a singular behaviour: he is pretty close to the first group (high 
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votes) but he felt higher the consistency and lower the rising power, 
comb facility before and after drying and the overall agreeableness. 
Panellist 4 seems quite confused and his behaviour is sometimes close 
to the one of the first group (consistency, rising power, brightness and 
volume), sometimes to the one of the second group (electricity, 
cleanliness maintenance and overall agreeableness) and sometimes he 
behaved as singleton (fragrance, comb facility before and after drying). 
Panellist 20 is frequently a minimal since he felt shampoo properties in a 
fewer way than all the others. 
 
 
4.5.3 Global judge panel analysis 

To have a further confirm of the obtained results, the panel has been 
analysed taking into account all the properties at the same time. Each 
panellist has been characterised by the overall quality (desirability score) 
he assigned to each shampoo. The matrix processed is the one of Table 
4.22, where each value is the desirability score calculated on all the 
weighted properties. The corresponding Hasse diagram is shown in 
Figure 4.16. 
Even if the ranking has been now provided by desirability scores, which 
aggregated the panellists behaviour on all the sensory properties 
evaluated, the previous results are pretty confirmed. 
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 Shampoo 

Panellist A B C D E F 

1 0.53 0.61 0.79 0.78 0.83 0.85 
2 0.50 0.57 0.65 0.66 0.76 0.78 
3 0.50 0.57 0.65 0.66 0.76 0.78 
4 0.43 0.51 0.67 0.66 0.76 0.79 
5 0.53 0.62 0.79 0.79 0.87 0.84 
6 0.53 0.62 0.79 0.79 0.87 0.84 
7 0.53 0.62 0.79 0.79 0.87 0.84 
8 0.53 0.62 0.79 0.79 0.87 0.84 
9 0.53 0.62 0.79 0.79 0.87 0.84 

10 0.53 0.62 0.79 0.79 0.87 0.84 
11 0.53 0.62 0.79 0.79 0.86 0.84 
12 0.50 0.57 0.65 0.66 0.76 0.78 
13 0.50 0.57 0.65 0.66 0.76 0.78 
14 0.48 0.53 0.60 0.61 0.74 0.74 
15 0.48 0.53 0.60 0.61 0.73 0.74 
16 0.48 0.53 0.60 0.61 0.73 0.74 
17 0.48 0.53 0.60 0.61 0.73 0.74 
18 0.48 0.53 0.60 0.61 0.73 0.74 
19 0.53 0.62 0.79 0.79 0.87 0.84 
20 0.42 0.47 0.49 0.51 0.65 0.66 

Table 4.22 – Panellist desirability scores on shampoo. 
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Figure 4.16 – Hasse diagram of 20 panellists based on desirability values of 6 
shampoos. 
 
 
The partial ranking analysis performed highlighted a quite good sensory 
panel characterised by a satisfactory agreement degree excepted for 
panellists 1, 4 and 20. Being the one analysed a trained panel, the 
obtained results suggested a further training of panellists 1, 4 and 20. 
 
 
4.5.4 Shampoo analysis 

Sensory analysis is often used by industries in the first phases of the 
product developing process to reduce the number of prototypes and to 
improve the optimisation process. Thus, it is of major importance ranking 
the samples according to their overall quality. 
A total and partial ranking analysis has been performed on the 6 
shampoos in order to compare them and detect their differences on 10 
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properties. The processed matrix, obtained by averaging the panel votes 
is shown in Table 4.23. 
 

ID Cons RP Fr Comb b Comb a Elect. Bright. V Maint. Agreeb. 

A 7 6 8.5 5 6 5 6 5 5 5 

B 6.5 7 8 6 6 4.5 6 5.5 5 6 

C 4 8 3 7 8 4 7 6 7 7 

D 4 7 3 8 7 3.5 8 7 6 7 

E 5 8 4 9 8 2 8 8 7 8 

F 5 9 6 8 8 3 7 8 8 9 

Table 4.23 - Shampoo average values on 10 properties: consistency (Cons), 
rising power (RP), fragrance (Fr), comb facility before drying (Comb b), comb 
facility before drying (Comb a), electricity (Elect.), brightness (Bright), volume 
(V), cleanliness maintenance (Maint.) and overall agreeableness (Agreeb.) 

 
To perform ranking analysis of the six shampoos, it should be explicated 
whether the best condition was satisfied with a minimum value or a 
maximum value of the property and the trend from the minimum to the 
maximum.  
The overall quality of the shampoos have been calculated by 
Desirability, Utility and Dominance functions; the obtained results are 
shown in Table 4.24 and the corresponding histograms in Figure 4.17. 
 
 

Shampoo Desirability Utility Dominance 
F 0.813 0.819 0.784 
E 0.810 0.815 0.810 
D 0.702 0.707 0.483 
C 0.700 0.705 0.482 
B 0.578 0.583 0.155 
A 0.521 0.528 0.014 

Table 4.24 –Desirability, Utility and Dominance values calculated on 10 sensory 
properties (sorted according to desirability values). 
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The analysis performed points out that shampoo F and E show the 
highest overall quality: they are the two prototypes which mostly satisfy 
the panellist sensory requirements. They are followed by shampoo D 
and C, which provide pretty good results as well, while shampoo B and 
A are the less satisfactory. Thus if the required overall quality score was 
equal to 0.7, shampoo E, F, D and C can be considered acceptable, 
while shampoo A and B has to be significantly modify. 
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Figure 4.17 –Desirability, Utility and Dominance histograms. 
 
Since a total order ranking approach provide a totally ordered sequence 
of the sample, a partial ranking analysis has been performed in order to 
highlight differences among the shampoos and highlight comparabilities 
and incomparabilities of them, if they occur. 
The Hasse diagram technique has been applied on the 6 shampoos and 
the corresponding diagram is illustrated in Figure 4.18. 
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Figure 4.18 – Hasse diagram of 6 shampoo. 
 
The Hasse diagram is arranged on four levels. Shampoo E and F are of 
equal overall quality and their incomparability is due to small 
discrepancy on the sensory properties. Shampoo F is better than E as 
far as concerns its rising power, its capability of cleanliness maintenance 
and its overall agreeableness; however it is worse than E as far as 
concerns the comb facility before drying, the hair electricity and 
brightness. 
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4.6 Total order ranking QSPR model for physico-chemical 
properties of polychlorinated biphenyls (PCBs). 

PCBs are widespread contaminants in the environment primarily in soil 
and freshwater systems. Their persistence in the environment has been 
a growing concern due to their low degradability, toxicity, mutagenicity 
and because of their tendency to bioaccumulate. Polychlorinated 
biphenyls (PCBs) are a group of industrial chemicals that share a 
common structure. PCBs were commercially produced as complex 
mixtures beginning in 1929 and are not known to occur naturally in the 
environment. Principle uses of PCBs include uses in transformers, 
capacitors, printing inks, paints, dedusting agents, pesticides, 
plasticisers, lubricant inks, paint additives etc., and they were marketed 
for these uses. PCBs are an environmental hazard due to their inability 
to degrade in the environment. PCBs are non-polar compounds. Their 
non-polar nature makes them only slightly soluble in water. The solubility 
of PCBs is also influenced by the environment as these compounds or 
preparations show a strong affinity for sediment and organic fractions. 
Owing to their low solubility's in water, PCBs are often associated with 
the solid fraction of the aquatic and terrestrial environments. They are 
highly lipophilic leading to their profound persistence and ability to 
bioaccumulate. The sorption reactions of PCBs in aquatic and terrestrial 
systems play an important role in determining their fate and transport in 
the environment. Due to the need to know the PCBs behaviour in the 
environment it is very useful to have a good knowledge of their physico-
chemical properties, like solubility, aqueous activity coefficient and 
octanol –water partitioning coefficient. Owing to the relevant importance 
of these chemicals in th environment many studies have been perfomed 
searching for quantitative structure – property relationships (QSPR) 
[Gramatica et al., 1998]. In the present study a total ranking model for 
three physico-chemical properties of PCBs is illustrated, the aim to 
provide a list of priority PCBs according to their environmental impact, 
contemporary accounting for their solubility, aqueous activity coefficient 
and lipophilicity. Despite classical multilinear regressions models, the 
total order ranking model does not require any assumptions about 
distribution properties and it allows a multiresponses (multiproperties) 
modelling. 
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4.6.1 PCB experimental data 

The solubilities and the logKow data have been taken from Patil [Patil, 
1991], while aqueous activity coefficient values have been taken from 
Myrdal [Myrdal et al., 1992]. The experimental values of the three 
properties analysed were available only for 64 PCBs over the 209. The 
64 PCBs analysed together with their experimental values are collected 
in Table 4.25.  
 

ID Name - Log Sw 
(mol/l) - Log Yw Log Kow 

1 3- 5.39 4.94 4.66 
2 4- 5.33 4.78 4.63 
3 2,2'- 5.72 5.06 4.72 
4 2,3'- 5.26 5.59 4.84 
5 2,4- 5.56 5.36 5.15 
6 2,4'- 5.46 5.40 5.09 
7 3,3'- 6.45 5.76 5.27 
8 4,4'- 6.37 5.65 5.23 
9 2,2',3- 6.10 5.91 5.12 
10 2,2',5- 6.17 5.84 5.33 
11 2,2',6- 5.90 5.15 5.04 
12 2,3,4'- 5.80 5.82 5.29 
13 2,3,6- 6.49 6.05 5.44 
14 2,3',5- 6.14 5.98 5.65 
15 2,4,4'- 6.22 6.00 5.71 
16 2,4',5- 6.18 5.98 5.68 
17 2,3',4'- 6.21 5.94 5.71 
18 2,2',3,3'- 6.83 6.08 5.67 
19 2,2',3,4'- 6.96 6.25 5.72 
20 2,2',3,5'- 6.91 6.28 5.73 
21 2,2',3,6'- 6.30 5.44 4.84 
22 2,2',4,4'- 7.23 6.43 5.94 
23 2,2',4,5- 6.86 6.68 5.69 
24 2,2',4,6- 6.94 5.46 5.75 
25 2,2',5,5'- 7.00 6.20 5.79 
26 2,2',5,6'- 6.65 5.85 5.55 
27 2,2',6,6'- 6.20 6.33 5.24 
28 2,3,4,4'- 6.86 5.72 6.24 
29 2,3,4',5- 6.77 6.26 6.10 
30 2,3',4,4'- 6.63 5.90 5.98 
31 2,3',4,6- 7.26 6.94 6.03 
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ID Name - Log Sw 
(mol/l) - Log Yw Log Kow 

32 2,3',4',5- 6.69 6.21 6.22 
33 2,4,4',5- 6.77 6.02 6.10 
34 2,4,4',6- 7.26 6.15 6.03 
35 2,3',4',5'- 6.71 6.06 5.98 
36 2,2',3,4,5- 7.87 6.32 6.38 
37 2,2',3,4,5'- 7.66 6.53 6.23 
38 2,2',3,4,6- 7.92 7.06 6.50 
39 2,2',3,5',6- 7.19 6.10 5.92 
40 2,2',3,4',5'- 7.76 6.51 6.30 
41 2,2',4,4',6- 7.66 6.94 6.23 
42 2,3,3',4',6- 7.65 7.05 6.20 
43 2,3,4,4',5- 7.50 6.59 6.71 
44 2,3',4,4',5- 7.33 6.55 6.57 
45 2,2',3,3',4,5- 8.42 7.15 6.76 
46 2,2',3,3',5,6- 7.65 7.08 6.20 
47 2,2',3,3',5,6'- 7.82 6.70 6.32 
48 2,2',3,4,4',5- 8.52 7.12 6.82 
49 2,2',3,4,4',5'- 8.38 7.14 6.73 
50 2,2',3,4,5,5'- 8.42 7.09 6.75 
51 2,2',3,5,5',6- 7.93 6.68 6.42 
52 2,2',4,4',5,5'- 8.49 7.50 6.80 
53 2,2',4,4',6,6'- 8.12 7.88 6.54 
54 2,3,3',4,4',5- 8.31 6.81 7.44 
55 2,3,3',4,4',6- 8.48 6.84 6.78 
56 2,3,3',4',5,6- 8.48 7.21 6.78 
57 2,2',3,3',4,4',5- 8.90 6.97 7.08 
58 2,2',3,3',4,5,6'- 8.59 6.84 6.85 
59 2,2',3,4,4',5,5'- 9.10 7.15 7.21 
60 2,2',3,4,4',5',6- 8.85 7.33 7.04 
61 2,2',3,4,5,5',6- 8.75 7.10 6.99 
62 2,2',3,3',4,4',5,5'- 9.70 8.23 7.62 
63 2,2',3,3',4,4',5,5',6- 10.18 8.21 7.94 
64 2,2',3,3',4,4',5,5',6,6'- 10.89 8.75 8.20 

Table 4.25 – Physico-chemical properties of 64 polychlorinated biphenyls. 
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4.6.2 Molecular descriptors 

The chemical structures of the PCBs have been described with more 
than 1500 molecular descriptors, in order to catch all the structural 
information.  
The molecular descriptors have been calculated by the Dragon program 
[Todeschini et.al., 2003] on the basis of the minimum energy molecular 
geometries optimized by HyperChem package [HYPERCHEM, 1995] 
(PM3 semiempirical method). In this study the following sets of 
molecular descriptors have been calculated: constitutional descriptors, 
topological descriptors [Bonchev, 1983; Devillers and Balaban, 2000], 
walk and path counts, connectivity indices [Kier and Hall, 1986], 
information indices, Moreau-Broto 2D-autocorrelations [Moreau and 
Broto, 1980a; 1980b; Broto et al., 1984], edge adjacency indices 
[Estrada, 1995], BCUT descriptors [Pearlman and Smith, 1998; 
Pearlman, 1999], topological charge indices [Galvez et al., 1994; 1995], 
eigenvalue based indices [Balaban et al., 1991], Randic molecular 
profiles [Randic 1995, 1996], geometrical descriptors, radial distribution 
function descriptors [Hemmer et al., 1999], 3D-MoRSE descriptors 
[Schuur, and Gasteiger, 1996, 1997], WHIM descriptors [Todeschini et 
al., 1994; Todeschini and Gramatica, 1997], GETAWAY descriptors 
[Consonni et al., 2002], functional group counts and atom centred 
fragments. Definitions and further information regarding all these 
molecular descriptors can be found in the Handbook of Molecular 
Descriptors of Todeschini and Consonni [Todeschini and Consonni, 
2000]. 

 
 
4.6.3 Experimental ranking 

The experimental ranking of the 64 PCBs was obtained by the 
desirability functions method. A linear transformation has been applied 
on the three properties, equally weighted, with the aim of providing a 
total rank of the chemicals according to their impact on the environment. 
Thus, the overall environmental impact has been calculated combining 
all the desirabilities through a geometrical mean. Once calculated the D 
for each chemical, all the PCBs have been ranked according to their D 
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value and the PCBs with a higher D are identified as the ones with a 
highest impact on the environment. The PCBs experimental ranking, is 
illustrated in Table 4.26 with the corresponding environmental impact 
score. 
 

ID Name Envirn. Impact Score

64 2,2',3,3',4,4',5,5',6,6'- 1.000 
63 2,2',3,3',4,4',5,5',6- 0.888 
62 2,2',3,3',4,4',5,5'- 0.831 
59 2,2',3,4,4',5,5'- 0.665 
60 2,2',3,4,4',5',6- 0.652 
57 2,2',3,3',4,4',5- 0.626 
52 2,2',4,4',5,5'- 0.621 
61 2,2',3,4,5,5',6- 0.621 
54 2,3,3',4,4',5- 0.602 
53 2,2',4,4',6,6'- 0.597 
56 2,3,3',4',5,6- 0.595 
48 2,2',3,4,4',5- 0.594 
45 2,2',3,3',4,5- 0.585 
49 2,2',3,4,4',5'- 0.579 
50 2,2',3,4,5,5'- 0.579 
58 2,2',3,3',4,5,6'- 0.576 
55 2,3,3',4,4',6- 0.564 
38 2,2',3,4,6- 0.522 
51 2,2',3,5,5',6- 0.485 
46 2,2',3,3',5,6- 0.477 
42 2,3,3',4',6- 0.475 
43 2,3,4,4',5- 0.473 
41 2,2',4,4',6- 0.471 
47 2,2',3,3',5,6'- 0.471 
40 2,2',3,4',5'- 0.449 
44 2,3',4,4',5- 0.447 
36 2,2',3,4,5- 0.445 
37 2,2',3,4,5'- 0.439 
31 2,3',4,6- 0.424 
22 2,2',4,4'- 0.377 
34 2,4,4',6- 0.364 
29 2,3,4',5- 0.346 
39 2,2',3,5',6- 0.346 
32 2,3',4',5- 0.344 
23 2,2',4,5- 0.343 
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ID Name Envirn. Impact Score

25 2,2',5,5'- 0.330 
33 2,4,4',5- 0.326 
19 2,2',3,4'- 0.325 
20 2,2',3,5'- 0.325 
35 2,3',4',5'- 0.316 
28 2,3,4,4'- 0.312 
18 2,2',3,3'- 0.299 
30 2,3',4,4'- 0.296 
26 2,2',5,6'- 0.258 
24 2,2',4,6- 0.253 
13 2,3,6- 0.252 
15 2,4,4'- 0.252 
17 2,3',4'- 0.247 
16 2,4',5- 0.244 
14 2,3',5- 0.238 
27 2,2',6,6'- 0.224 
7 3,3'- 0.211 
10 2,2',5- 0.204 
8 4,4'- 0.194 
9 2,2',3- 0.180 
12 2,3,4'- 0.167 
21 2,2',3,6'- 0.122 
11 2,2',6- 0.107 
5 2,4- 0.105 
6 2,4'- 0.090 
3 2,2'- 0.053 
1 3- 0.020 
2 4- 0.000 
4 2,3'- 0.000 

Table 4.26 – Environmental impact by desirability function of 64 polychlorinated 
biphenyls. 
 
The experimental ranking highliths that the environmetal impact of PCBs 
is strictly correlated to their degree of chlorination, since their sorption 
increases with the degree of chlorination, and their solubility and water 
activity decreases with the increasing number of chlorine atoms. 
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4.6.4 Model ranking 

The correlations between the environmetal impact of the PCBs and the 
molecular descriptors have been estimated by the desirability and utility 
methods. However because of the extremely high number variables, the 
Genetic Algorithm (GA-VSS) approach has been used as the variable 
selection method. Starting from a population of 100 random models with 
a number of variables equal to or less 3, the algorithm has explored new 
combinations of variables, selecting them by a mechanism of 
reproduction/mutation similar to that of biological population evolution. 
The Spearman’s rank correlation coefficient (rexp-mod) has been used as 
optimization parameters in the genetic evolution algorithm to quantify the 
correlation between the total experimental ranking and the total model 
ranking. All of the calculations have been performed by the in-house 
software RANA for variable selection for WINDOWS/PC [Todeschini, et 
al. 2003].  
The best models are collected in Table 4.27. 
 

Size Method Variables rexp-mod 

3 Utility S3K   piPC06   BELm2* 98.13 

2 Utility X1A*   BELm2* 97.93 

Table 4.27 – Best total ranking models: star indicates an inverse transformation. 
 
A very good result is provided by simple utility model, made of two 
variables: the average connectivity index (X1A) and a Burden descriptor 
(BELm2). The first one is a topological descriptor calculated from the 
vertex degree of the atoms in the H-depleted molecular graph while the 
second one is the second lowest eigenvalue of the Burden matrix 
weighted by atomic masses. Both the descriptors are inversely 
correlated to the environmental impact of the PCBs, as their values 
decrease with the increasing size of the PCBs. The correlation between 
experimental and model ranking is pretty high (97.93). The model 
ranking is illustrated in Table 4.28. 
 
 



Total ranking model for PCB physico-chemical properties 

229 

 

ID 
 

Name 

64  2,2',3,3',4,4',5,5',6,6'- 
63  2,2',3,3',4,4',5,5',6- 
62  2,2',3,3',4,4',5,5'- 
59  2,2',3,4,4',5,5'- 
61  2,2',3,4,5,5',6- 
60  2,2',3,4,4',5',6- 
57  2,2',3,3',4,4',5- 
58  2,2',3,3',4,5,6'- 
52  2,2',4,4',5,5'- 
54  2,3,3',4,4',5- 
55  2,3,3',4,4',6- 
48  2,2',3,4,4',5- 
56  2,3,3',4',5,6- 
50  2,2',3,4,5,5'- 
53  2,2',4,4',6,6'- 
49  2,2',3,4,4',5'- 
51  2,2',3,5,5',6- 
45  2,2',3,3',4,5- 
47  2,2',3,3',5,6'- 
46  2,2',3,3',5,6- 
44  2,3',4,4',5- 
43  2,3,4,4',5- 
41  2,2',4,4',6- 
40  2,2',3,4',5'- 
36  2,2',3,4,5- 
42  2,3,3',4',6- 
37  2,2',3,4,5'- 
38  2,2',3,4,6- 
39  2,2',3,5',6- 
33  2,4,4',5- 
29  2,3,4',5- 
34  2,4,4',6- 
31  2,3',4,6- 
30  2,3',4,4'- 
32  2,3',4',5- 
22  2,2',4,4'- 
28  2,3,4,4'- 
25  2,2',5,5'- 
35  2,3',4',5'- 
23  2,2',4,5- 
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ID 
 

Name 

24  2,2',4,6- 
19  2,2',3,4'- 
20  2,2',3,5'- 
26  2,2',5,6'- 
18  2,2',3,3'- 
15  2,4,4'- 
16  2,4',5- 
21  2,2',3,6'- 
14  2,3',5- 
27  2,2',6,6'- 
12  2,3,4'- 
17  2,3',4'- 
10  2,2',5- 
13  2,3,6- 
8  4,4'- 
9  2,2',3- 
11  2,2',6- 
7  3,3'- 
5  2,4- 
6  2,4'- 
4  2,3'- 
3  2,2'- 
2  4- 
1  3- 

Table 4.28 – Model experimental ranking calculated by X1A and BELm2 utility 
function. 
 
 
4.6.5 Interval estimation 

The experimental ranking of each PCB has been estimated by the 
obtained ranking model, according to the procedure described in 
Chapter3: the experimental ranking of any chemical has been estimated 
looking for those two elements located at the shortest path and which 
experimental value difference constitutes the smallest positive interval. 
Then, the calculated intervals have been compared to the corresponding 
experimentally derived intervals, obtained by deleting each chemical 
from the experimental ranking diagram; and using the remaining training 
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set elements to calculate the experimental intervals of the deleted 
element from the experimental ranking diagram. Analysing one property 
at a time, for each chemical the standardised disagreement δ i r  between 

its experimentally derived interval and model-calculated interval has 
been calculated. The experimentally derived intervals and the calculated 
intervals for solubility (-LogSw), aqueous coefficient (-LogYw) and 
hydrophobicity (LogKow), together with the corresponding standardise 
disagreements and experimental uncertainties Ry are illustrated in Table 
4.29, 4.30 and 4.31, respectively. 
 
Response: -LogSw Experimental Calculated   

ID Name Min Max Min Max δ-LogSw Ry 
1 3- 5.26 5.72 - < 5.33 0.07 - 
2 4- - < 5.39 5.39 5.72 0.06 0.06 
3 2,2'- 5.39 5.46 5.33 5.46 0.01 0.02 
4 2,3'- - < 5.39 5.33 5.46 0.01 0.02 
5 2,4- 5.46 5.90 5.46 6.45 0.10 0.18 
6 2,4'- 5.39 5.56 5.26 5.56 0.02 0.05 
7 3,3'- 6.17 6.20 5.56 5.90 0.11 0.06 
8 4,4'- 6.10 6.17 6.10 6.49 0.06 0.07 
9 2,2',3- 5.80 6.37 5.90 6.37 0.02 0.08 
10 2,2',5- 6.37 6.45 6.10 6.21 0.06 0.02 
11 2,2',6- 5.56 6.30 5.56 6.10 0.04 0.10 
12 2,3,4'- 6.30 6.37 6.17 6.20 0.04 0.01 
13 2,3,6- 6.21 6.94 6.10 6.17 0.15 0.01 
14 2,3',5- 6.20 6.21 6.20 6.30 0.02 0.02 
15 2,4,4'- 6.21 6.94 6.18 6.83 0.02 0.12 
16 2,4',5- 6.14 6.21 6.14 6.22 0.00 0.01 
17 2,3',4'- 6.18 6.22 6.17 6.20 0.01 0.01 
18 2,2',3,3'- 6.63 6.86 6.22 6.65 0.11 0.08 
19 2,2',3,4'- 6.71 6.77 6.91 6.94 0.04 0.01 
20 2,2',3,5'- 6.71 6.77 6.65 6.96 0.04 0.06 
21 2,2',3,6'- 5.90 6.10 6.14 6.18 0.05 0.01 
22 2,2',4,4'- 7.26 7.26 6.86 7.26 0.07 0.07 
23 2,2',4,5- 7.00 7.19 6.94 7.00 0.04 0.01 
24 2,2',4,6- 6.22 6.65 6.65 6.86 0.11 0.04 
25 2,2',5,5'- 6.77 6.86 6.71 6.86 0.01 0.03 
26 2,2',5,6'- 6.22 6.63 6.83 6.91 0.12 0.01 
27 2,2',6,6'- 6.17 6.18 5.80 6.14 0.07 0.06 
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Response: -LogSw Experimental Calculated   

ID Name Min Max Min Max δ-LogSw Ry 
28 2,3,4,4'- 6.63 6.71 7.00 7.23 0.11 0.04 
29 2,3,4',5- 6.69 7.26 6.63 6.77 0.10 0.02 
30 2,3',4,4'- 6.65 6.83 6.69 7.26 0.08 0.10 
31 2,3',4,6- 7.23 7.66 6.63 7.26 0.18 0.11 
32 2,3',4',5- 6.86 7.19 7.23 7.26 0.07 0.01 
33 2,4,4',5- 6.91 7.00 6.77 7.19 0.06 0.07 
34 2,4,4',6- 6.77 7.23 6.63 6.77 0.11 0.02 
35 2,3',4',5'- 6.86 6.91 6.86 7.00 0.02 0.02 
36 2,2',3,4,5- 7.26 7.33 7.65 7.76 0.09 0.02 
37 2,2',3,4,5'- 7.26 7.87 7.19 7.65 0.05 0.08 
38 2,2',3,4,6- 7.93 8.48 7.19 7.65 0.23 0.08 
39 2,2',3,5',6- 6.69 7.26 6.77 7.92 0.13 0.20 
40 2,2',3,4',5'- 7.33 7.66 7.65 7.66 0.06 0.00 
41 2,2',4,4',6- 7.76 7.82 7.65 7.65 0.03 0.00 
42 2,3,3',4',6- 7.50 7.65 7.66 7.87 0.07 0.04 
43 2,3,4,4',5- 7.66 7.93 7.66 7.82 0.02 0.03 
44 2,3',4,4',5- 7.66 7.76 7.50 7.65 0.05 0.03 
45 2,2',3,3',4,5- 8.38 8.52 7.82 7.93 0.12 0.02 
46 2,2',3,3',5,6- 7.65 7.93 7.33 7.82 0.08 0.09 
47 2,2',3,3',5,6'- 7.76 7.82 7.65 8.42 0.13 0.14 
48 2,2',3,4,4',5- 8.42 8.48 8.48 8.48 0.01 0.00 
49 2,2',3,4,4',5'- 8.48 8.52 7.93 8.12 0.10 0.03 
50 2,2',3,4,5,5'- 8.48 8.52 8.12 8.48 0.07 0.06 
51 2,2',3,5,5',6- 7.65 7.92 7.82 8.38 0.11 0.10 
52 2,2',4,4',5,5'- 8.31 8.90 8.31 8.59 0.06 0.05 
53 2,2',4,4',6,6'- 8.48 8.49 8.38 8.42 0.02 0.01 
54 2,3,3',4,4',5- 8.12 8.49 8.48 8.49 0.06 0.00 
55 2,3,3',4,4',6- 7.92 8.59 8.48 8.49 0.12 0.00 
56 2,3,3',4',5,6- 8.42 8.49 8.42 8.52 0.01 0.02 
57 2,2',3,3',4,4',5- 8.49 8.85 8.59 8.85 0.02 0.05 
58 2,2',3,3',4,5,6'- 7.92 8.38 8.49 8.90 0.17 0.07 
59 2,2',3,4,4',5,5'- 8.85 9.70 8.75 9.70 0.02 0.17 
60 2,2',3,4,4',5',6- 8.90 9.10 8.90 9.10 0.00 0.04 
61 2,2',3,4,5,5',6- 8.49 8.90 8.85 9.10 0.10 0.04 
62 2,2',3,3',4,4',5,5'- 9.10 10.18 9.10 10.18 0.00 0.19 
63 2,2',3,3',4,4',5,5',6- 9.70 10.89 9.70 10.89 0.00 0.21 
64 2,2',3,3',4,4',5,5',6,6'- >10.18 - > 10.18 - 0.00 - 

Table 4.29 – Experimental solubility interval estimation. 
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By comparing the experimentally derived intervals with the calculated 
ones, the average disagreement turned out to be pretty low 
( δ− =LogS 0.06w ). Moreover, the average disagreement between the 
quantitative experimental values and their derived intervals calculated is 
equal to ~

δ− =LogS 0.06
w

. The model quality for the solubility evaluated by 

complement of the average disagreement between experimental and 
calculated intervals is satisfactory ( Q 0.94LogSw− = ). In addition, the 

standard deviation error has been calculated: SDE = 0.263. 
 

Response: -LogYw Experimental Calculated   

ID Name Min Max Min Max δ-LogYw Ry 
1 3- 4.78 5.06 - < 4.78 0.07 - 
2 4- - < 4.94 4.94 5.06 0.03 0.03 
3 2,2'- 4.94 5.40 4.78 5.59 0.09 0.20 
4 2,3'- - < 4.94 5.06 5.40 0.12 0.09 
5 2,4- 5.40 5.44 5.40 5.76 0.08 0.09 
6 2,4'- 5.06 5.36 5.59 5.76 0.18 0.04 
7 3,3'- 5.84 6.33 5.36 5.91 0.23 0.14 
8 4,4'- 5.82 5.84 5.91 6.05 0.06 0.04 
9 2,2',3- 5.82 5.84 5.15 5.65 0.17 0.13 
10 2,2',5- 5.65 5.76 5.65 5.94 0.05 0.07 
11 2,2',6- 5.36 5.44 5.76 5.91 0.14 0.04 
12 2,3,4'- 5.44 5.91 5.94 6.33 0.22 0.10 
13 2,3,6- 5.94 6.00 5.65 5.84 0.09 0.05 
14 2,3',5- 5.76 5.98 5.82 5.98 0.02 0.04 
15 2,4,4'- 5.94 6.00 5.98 6.08 0.03 0.03 
16 2,4',5- 5.98 6.05 5.44 6.00 0.15 0.14 
17 2,3',4'- 5.98 6.00 5.84 6.33 0.12 0.12 
18 2,2',3,3'- 5.90 6.06 6.00 6.28 0.08 0.07 
19 2,2',3,4'- 6.06 6.28 6.28 6.68 0.16 0.10 
20 2,2',3,5'- 6.06 6.25 5.85 6.25 0.05 0.10 
21 2,2',3,6'- 5.15 5.82 5.98 5.98 0.21 0.00 
22 2,2',4,4'- 6.15 6.94 5.72 6.21 0.29 0.12 
23 2,2',4,5- 6.20 6.21 5.46 6.06 0.19 0.15 
24 2,2',4,6- 6.00 6.08 6.25 6.68 0.17 0.11 
25 2,2',5,5'- 6.02 6.68 6.06 6.43 0.07 0.09 
26 2,2',5,6'- 5.46 5.90 6.08 6.28 0.21 0.05 
27 2,2',6,6'- 5.76 5.98 5.82 5.98 0.02 0.04 
28 2,3,4,4'- 5.90 6.06 6.20 6.43 0.13 0.06 
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Response: -LogYw Experimental Calculated   

ID Name Min Max Min Max δ-LogYw Ry 
29 2,3,4',5- 6.21 6.43 5.90 6.02 0.13 0.03 
30 2,3',4,4'- 5.85 6.08 6.21 6.94 0.27 0.18 
31 2,3',4,6- 6.43 6.53 5.90 6.15 0.16 0.06 
32 2,3',4',5- 6.20 6.26 6.43 6.94 0.19 0.13 
33 2,4,4',5- 6.06 6.20 6.26 7.06 0.25 0.20 
34 2,4,4',6- 6.10 6.43 5.90 6.26 0.09 0.09 
35 2,3',4',5'- 5.72 6.25 5.46 6.20 0.08 0.19 
36 2,2',3,4,5- 6.53 6.55 6.53 6.94 0.10 0.10 
37 2,2',3,4,5'- 6.43 6.55 6.10 7.05 0.21 0.24 
38 2,2',3,4,6- 6.68 6.84 6.10 6.53 0.19 0.11 
39 2,2',3,5',6- 6.21 6.43 6.02 7.06 0.21 0.26 
40 2,2',3,4',5'- 6.55 6.70 6.32 6.94 0.12 0.16 
41 2,2',4,4',6- 6.51 6.59 6.51 6.59 0.00 0.02 
42 2,3,3',4',6- 6.59 7.08 6.10 6.53 0.25 0.11 
43 2,3,4,4',5- 6.51 7.05 6.51 6.55 0.13 0.01 
44 2,3',4,4',5- 6.32 6.51 6.59 7.08 0.19 0.12 
45 2,2',3,3',4,5- 7.09 7.12 6.70 7.14 0.10 0.11 
46 2,2',3,3',5,6- 7.05 7.06 6.55 6.70 0.13 0.04 
47 2,2',3,3',5,6'- 6.51 6.59 7.08 7.15 0.16 0.02 
48 2,2',3,4,4',5- 7.15 7.21 7.21 7.50 0.09 0.07 
49 2,2',3,4,4',5'- 6.84 7.15 6.68 7.88 0.22 0.30 
50 2,2',3,4,5,5'- 6.84 7.15 7.14 7.21 0.09 0.02 
51 2,2',3,5,5',6- 7.05 7.06 6.70 7.14 0.11 0.11 
52 2,2',4,4',5,5'- 6.81 6.97 6.81 6.84 0.03 0.01 
53 2,2',4,4',6,6'- 7.21 7.50 7.14 7.21 0.09 0.02 
54 2,3,3',4,4',5- 7.21 7.50 6.84 7.50 0.09 0.17 
55 2,3,3',4,4',6- 7.06 7.14 7.12 7.50 0.11 0.10 
56 2,3,3',4',5,6- 7.12 7.88 7.09 7.12 0.20 0.01 
57 2,2',3,3',4,4',5- 7.10 7.33 6.84 7.33 0.07 0.12 
58 2,2',3,3',4,5,6'- 6.84 7.09 6.81 6.97 0.04 0.04 
59 2,2',3,4,4',5,5'- 7.33 8.23 7.10 8.23 0.06 0.28 
60 2,2',3,4,4',5',6- 6.97 7.15 6.97 7.10 0.01 0.03 
61 2,2',3,4,5,5',6- 6.81 6.97 6.97 7.15 0.09 0.05 
62 2,2',3,3',4,4',5,5'- 7.15 8.21 7.15 8.21 0.00 0.27 
63 2,2',3,3',4,4',5,5',6- 8.23 8.75 8.23 8.75 0.00 0.13 
64 2,2',3,3',4,4',5,5',6,6'- > 8.21 - > 8.21 - 0.00 - 

Table 4.30 – Aqueous coefficient activity interval estimation.  
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The average disagreement obtained by comparing the experimentally 
derived intervals with the calculated ones, is quite low ( δ− =LogY 0.12w ). 
The average disagreement between the quantitative experimental 
values and their derived intervals calculated is equal to ~

δ− =LogY 0.09
w

. 

The model quality for the aqueous activity coefficient evaluated by 
complement of the average disagreement between experimental and 
calculated intervals is quite good ( Q 0.88LogYw− = ), and the standard 

deviation error is equal to = 0.421. 
 

Response: LogKow Experimental Calculated   

ID Name Min Max Min Max δ-Logkow Ry 

1 3- 4.63 4.72 - 4.63 0.03 - 
2 4- - < 4.66 4.66 4.72 0.02 0.02 
3 2,2'- 4.66 5.09 4.63 4.84 0.08 0.06 
4 2,3'- - < 4.66 4.72 5.09 0.12 0.10 
5 2,4- 4.72 5.04 5.09 5.27 0.15 0.05 
6 2,4'- 4.72 5.15 4.84 5.15 0.03 0.09 
7 3,3'- 5.23 5.24 5.09 5.12 0.04 0.01 
8 4,4'- 5.12 5.33 5.12 5.44 0.03 0.09 
9 2,2',3- 5.29 5.33 5.04 5.23 0.08 0.05 
10 2,2',5- 5.23 5.27 5.44 5.71 0.13 0.08 
11 2,2',6- 5.15 5.29 5.15 5.23 0.02 0.02 
12 2,3,4'- 4.84 5.12 5.33 5.65 0.23 0.09 
13 2,3,6- 5.71 5.75 5.23 5.33 0.15 0.03 
14 2,3',5- 5.24 5.68 5.24 5.68 0.00 0.12 
15 2,4,4'- 5.71 5.75 4.84 5.67 0.25 0.23 
16 2,4',5- 5.65 5.71 4.84 5.71 0.23 0.24 
17 2,3',4'- 5.68 5.71 5.23 5.29 0.13 0.02 
18 2,2',3,3'- 5.98 6.24 5.71 5.73 0.15 0.01 
19 2,2',3,4'- 5.98 6.10 5.73 5.75 0.10 0.01 
20 2,2',3,5'- 5.98 6.10 5.55 5.72 0.15 0.05 
21 2,2',3,6'- 5.04 5.29 5.65 5.68 0.18 0.01 
22 2,2',4,4'- 6.03 6.03 5.79 6.22 0.12 0.12 
23 2,2',4,5- 5.79 6.22 5.75 5.98 0.08 0.06 
24 2,2',4,6- 5.44 5.55 5.72 5.98 0.15 0.07 
25 2,2',5,5'- 6.10 6.22 5.98 6.24 0.04 0.07 
26 2,2',5,6'- 5.75 5.98 5.67 5.73 0.09 0.02 
27 2,2',6,6'- 5.27 5.65 5.29 5.65 0.01 0.10 
28 2,3,4,4'- 5.67 5.98 5.79 5.94 0.04 0.04 
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Response: LogKow Experimental Calculated   

ID Name Min Max Min Max δ-Logkow Ry 

29 2,3,4',5- 5.69 6.03 6.03 6.10 0.11 0.02 
30 2,3',4,4'- 5.55 5.67 5.94 6.03 0.13 0.03 
31 2,3',4,6- 5.94 6.23 5.98 6.03 0.07 0.01 
32 2,3',4',5- 5.69 5.92 5.94 5.98 0.08 0.01 
33 2,4,4',5- 5.72 5.79 6.10 6.50 0.22 0.11 
34 2,4,4',6- 5.92 5.94 6.03 6.10 0.05 0.02 
35 2,3',4',5'- 5.67 5.72 5.69 5.79 0.03 0.03 
36 2,2',3,4,5- 6.23 6.57 6.20 6.30 0.08 0.03 
37 2,2',3,4,5'- 6.03 6.38 6.20 6.38 0.05 0.05 
38 2,2',3,4,6- 6.42 6.78 5.92 6.23 0.24 0.09 
39 2,2',3,5',6- 5.69 6.03 6.10 6.50 0.23 0.11 
40 2,2',3,4',5'- 6.57 6.71 6.20 6.23 0.14 0.01 
41 2,2',4,4',6- 6.30 6.71 6.30 6.71 0.00 0.11 
42 2,3,3',4',6- 6.32 6.42 6.23 6.38 0.04 0.04 
43 2,3,4,4',5- 6.23 6.42 6.23 6.57 0.04 0.10 
44 2,3',4,4',5- 6.23 6.30 6.23 6.32 0.01 0.03 
45 2,2',3,3',4,5- 6.73 6.82 6.32 6.42 0.14 0.03 
46 2,2',3,3',5,6- 6.20 6.42 6.57 6.76 0.16 0.05 
47 2,2',3,3',5,6'- 6.30 6.71 6.20 6.76 0.04 0.16 
48 2,2',3,4,4',5- 6.76 6.78 6.75 6.78 0.00 0.01 
49 2,2',3,4,4',5'- 6.50 6.76 6.42 6.54 0.08 0.03 
50 2,2',3,4,5,5'- 6.50 6.76 6.54 6.78 0.02 0.07 
51 2,2',3,5,5',6- 6.20 6.50 6.32 6.73 0.10 0.11 
52 2,2',4,4',5,5'- 6.54 7.08 6.78 6.85 0.13 0.02 
53 2,2',4,4',6,6'- 6.78 7.44 6.73 6.75 0.20 0.01 
54 2,3,3',4,4',5- 6.54 6.80 6.78 6.80 0.07 0.01 
55 2,3,3',4,4',6- 6.50 6.85 6.82 7.44 0.25 0.17 
56 2,3,3',4',5,6- 6.82 7.44 6.75 6.82 0.19 0.02 
57 2,2',3,3',4,4',5- 6.80 7.04 6.85 7.04 0.01 0.05 
58 2,2',3,3',4,5,6'- 6.50 6.73 6.80 7.08 0.16 0.08 
59 2,2',3,4,4',5,5'- 7.04 7.62 6.99 7.62 0.01 0.18 
60 2,2',3,4,4',5',6- 7.08 7.21 6.85 6.99 0.10 0.04 
61 2,2',3,4,5,5',6- 6.54 7.08 7.04 7.21 0.18 0.05 
62 2,2',3,3',4,4',5,5'- 7.21 7.94 7.21 7.94 0.00 0.20 
63 2,2',3,3',4,4',5,5',6- 7.62 8.20 7.62 8.20 0.00 0.16 
64 2,2',3,3',4,4',5,5',6,6'- > 7.94  > 7.94  0.00 - 

Table 4.31 – Hydrophobicity interval estimation.  
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By comparing the experimentally intervals with the calculated ones for 
the hydrophobicity a 0.10 average disagreement has been obtained 
( δ− =LogK 0.10ow ), and the same value has been obtained for the average 
disagreement between the quantitative experimental values and their 
derived intervals ( ~

δ− =LogK 0.10
ow

). The hydrophobicity model is of good 
quality ( Q 0.90LogKow− = ). In addition, the standard deviation error has 

been calculated: SDE = 0.245. 
 
4.6.6 Overall model quality 

Once calculated the model quality for the three single properties, the 
overall ranking model quality has been evaluated from the single quality 
parameters by arithmetic means (QT ), geometric mean (QG ) and by the 
minimum value obtained on the three responses (QM ): 
 

QT 0.91=    QG 0.91=   QM 0.88=  
 
The multilinear regression has been performed developed on the 
environmental impact score of the 64 PCBs starting from the same 
molecular descriptors used for the ranking model  

The total ranking model obtained for PCBs physico-chemical properties 
allows the defining of a priority list for PCBs according to their 
environmental impact, contemporary accounting for their solubility, 
aqueous activity coefficient and hydrophobicity. The model obtained is a 
very simple model, based on only two descriptors able to provide a 
multiresponses (multiproperties) modelling. Moreover, by multilinear 
regression modelling performed on the environmental impact score of 
the 64 PCBs starting from the same molecular descriptors used for the 
ranking model it has been obtained a two dimensional model with a 
leave-one-out explained variance equal to 0.95. The two selected 
descriptors are the second lowest eigenvalue of the Burden matrix 
weighted by atomic masses (BELm2) and a 3D-MoRSE descriptor 
(Mor29u). It can be poited out that BELm2 descriptor has been selected 
by the ranking model too. 
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4.7 Toxicity partial ranking model 
Today, more than 100.000 chemical are in use and constitute a potential 
risk to the environment. Human activities introduce a large amount of 
different chemicals into the aquatic environment, either by accident, in 
wastewaters (surfactants and pharmaceuticals from household use, 
heavy metals from industry) or in run-off waters from agriculture 
(herbicides and fungicides used in plant protection products). Even so, it 
is the professed aim of the European Communities, to ensure the 
sustainable use of water and to protect the structure and function of the 
aquatic ecosystem (EU parliament 2000). Thus, a methodology is 
needed for risk assessment of chemicals. In Europe, the ecotoxicity of a 
chemical for the aquatic environment is typically estimated on the basis 
of a set of data from simple, standardised bioassays on surrogate 
organism taken as representative of the major trophic levels. In the case 
of “new” chemicals that entered the European market after 18 
September 1981, the hazard assessment is based on a minimum set of 
toxicity data from bacteria, algae, and daphnids. However, it is not 
practically possible experimentally to generate all the necessary input 
information for the risk assessment of these chemicals. For this reason, 
it appears necessary to obtain part of the information concerning the 
chemicals fate and effect in the environment by models. The 
development of efficient and inexpensive technologies for effective risk 
assessment and to predict physical, chemical and biological properties 
of new compounds is thus of major interest. 
Quantitative Structure - Activity Relationships (QSARs) are estimation 
methods developed and used to predict certain effects or properties of 
chemical substances, which are primarily based on the structure of the 
chemicals. QSAR models describe variation in a given end point of 
chemicals, from the variation in their structural and electronic features. 
Based on the developed QSAR model, end-point of new, structurally 
related chemicals, not yet experimentally investigated, may be predicted. 
QSAR models can be used with many purposes: screening chemical 
databases and virtual libraries before the synthesis of chemicals; 
reducing reliance on animal testing. Moreover, they contribute to the 
decision making process on whether further testing is needed to clarify 
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an end-point of interest, and, if further testing is necessary, to optimise 
testing strategies, when appropriate. 
The development of quantitative-structure activity relationships (QSARs) 
often relies on the application of statistical methods such as multilinear 
regression (MLR) or partial least squares regression (PLS).  
When a relationship between a toxic activity and molecular descriptors is 
searched for, it should be kept in mind that toxicity data are typically 
multiple response endpoints, i.e. the chemical toxicity is analysed at 
different concentrations to detect both acute and chronic effects. 
Furthermore, toxicity data often include uncertainties and measurements 
errors. Thus, if the aim is to point out the more toxic and thus hazardous 
chemicals and to set priorities before final decisions are taken and data 
material is characterised by uncertainties, order models can be used as 
alternative to statistical methods such as multi-linear regression (MLR). 
Order ranking models assume, contrary to standard multidimensional 
statistical analysis, neither linearity nor any assumptions about 
distribution properties; it can be consider as a parameter-free method. 
Thus, even if the information provided by order ranking models is not a 
quantitative information but a simpler information regarding the ordinal 
relation among chemicals, for exposure analysis and risk assessment 
ranking models can be a very useful tool in supporting decision making 
processes.  
 
 
4.7.1 Toxicity experimental data 

The toxicity data have been provided by the EU project: BEAM EVK1-
1999-00012. The dataset consists of 23 chemicals selected as active 
ingredients used in agricultural practice: they are included among the 10 
major European crops in quantitative terms and they are representative 
of agriculture of various European areas (North, Central, South). The 
chemicals have been tested for toxicity on Scenedesum vacuolatus by 
the research group of Prof. Grimme, Bremen University, EU project: 
BEAM EVK1-1999-00012. The dependent variables selected for 
describing their toxicity were the algae inhibition with 3 concentrations of 
10, 50, 90 mmol/l. Table 4.32 shows the toxicity values of the 23 
chemicals. 
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ID Substance LOG(1/EC10) LOG(1/EC50) LOG(1/EC90) 

1 Aclonifen 2.024 1.527 1.067 

2 Atrazin 1.574 0.745 0.415 

3 Lenacil 1.916 1.306 1.027 

4 Chloridazon -0.045 -0.723 -1.155 

5 Alachlor 1.215 0.853 0.621 

6 Metolachlor 0.434 0.087 -0.078 

7 Tribenuron-methyl 1.683 0.597 -0.095 

8 Thifensulfuron-methyl 0.057 -1.139 -2.335 

9 Bromoxynil -1.878 -2.115 -2.352 

10 Carbofuran -1.169 -2.121 -2.728 

11 Cycloxydim -1.498 -2.445 -3.048 

12 Ethofumesate 0.112 -1.588 -2.671 

13 Isofenphos 0.952 -0.890 -2.119 

14 Isoxaflutol -1.211 -1.956 -2.431 

15 MCPA -2.076 -2.902 -3.729 

16 Terbuthylazin 1.642 1.159 0.852 

17 Metamitron 0.657 -0.329 -0.957 

18 Ioxynil -0.689 -1.534 -2.072 

19 Triasulfuron 1.391 0.273 -0.440 

20 Isoproturon 1.363 0.641 0.166 

21 Linuron 1.990 1.057 0.463 

22 Pendimethalin 2.706 2.069 1.663 

23 2,4Dichlorophenoxyacetic acid -1.891 -2.932 -3.369 

Table 4.32 – Experimental Toxicity (Log1/EC) data of 23 chemicals. 
 
 
4.7.2 Molecular descriptors 

The chemical structures of the chemicals have been described with 
more than 1500 molecular descriptors, in order to catch all the structural 
information. The molecular descriptors used to search for the best partial 
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ranking model of the toxicity activity of the selected chemicals have been 
calculated by the Dragon program [Todeschini et.al., 2003] on the basis 
of the minimum energy molecular geometries optimized by HyperChem 
package [HYPERCHEM, 1995] (PM3 semiempirical method). In this 
study the following sets of molecular descriptors have been calculated: 
constitutional descriptors, topological descriptors [Bonchev, 1983; 
Devillers and Balaban, 2000], walk and path counts, connectivity indices 
[Kier and Hall, 1986], information indices, Moreau-Broto 2D-
autocorrelations [Moreau and Broto, 1980a; 1980b; Broto et al., 1984], 
edge adjacency indices [Estrada, 1995], BCUT descriptors [Pearlman 
and Smith, 1998; Pearlman, 1999], topological charge indices [Galvez et 
al., 1994; 1995], eigenvalue based indices [Balaban et al., 1991], Randic 
molecular profiles [Randic 1995, 1996], geometrical descriptors, radial 
distribution function descriptors [Hemmer et al., 1999], 3D-MoRSE 
descriptors [Schuur, and Gasteiger, 1996, 1997], WHIM descriptors 
[Todeschini et al., 1994; Todeschini and Gramatica, 1997], GETAWAY 
descriptors [Consonni et al., 2002], functional group counts and atom 
centred fragments. Definitions and further information regarding all these 
molecular descriptors can be found in the Handbook of Molecular 
Descriptors of Todeschini and Consonni [Todeschini and Consonni, 
2000]. 
 
 
4.7.3 Experimental ranking 

The Hasse diagram technique has been applied on the three toxicity 
responses of algae inhibition with 3 concentrations of 10, 50, 90 mmol/l. 
Figure 4.19 shows the experimental Hasse diagram: it is arranged on 
twelve levels and characterized by 223 comparable pairs of elements 
and 60 contradictions. The diagram is of simple interpretation: the more 
toxic chemicals are located on the top while the less toxic are on the 
bottom. The diagram points out pendimethalin as a maximal element, 
since it is characterized by the highest toxicity values at all the three 
concentration levels. It is the most toxic chemical among the 23 
investigated, followed by aclonifen. Linuron and lenacil can be 
considered at the same toxicity level but with diverse behavior: the 
former explicates high toxicity at low concentration (acute effect), the 
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latter at high concentrations (chronic effect). MCPA (2-Methyl-4-
chlorophenoxyacetic acid) and 2,4-Dichlorophenoxyacetic acid are 
minimals, showing the low toxicity values at all the three concentration 
levels. 
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Figure 4.19 – Experimental Hasse diagram 
 
No equivalence classes with more than one element exists, thus no 
degeneracy occurs (D = 0; kstd = 0) and the entropy is maximum (H* = 1; 
G* = 1). The diagram shows a high capability of discriminating elements 
according to different ranks (DbyR = 0.88), good selectivity (T = 0.50) 
and low element diversity (div = 0.09). The number of comparability is 
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quite high (Χ = 0.88) and thus the stability quite low (P = 0.12; StR = 
0.11). The diagram is not complex (Cx’ = 0.24) and element relationships 
can be easily investigated. 
 
 
4.7.4 Model ranking 

The correlations between the toxicity of the considered chemicals and 
the molecular descriptors have been estimated by the partial ranking 
Hasse diagram technique (HDT). However as an exhaustive search for 
the best ranking models within a wide set of descriptors requires 
extensive computational resources and is time consuming, given the 
extremely high number of possible descriptor combinations, the Genetic 
Algorithm (GA-VSS) approach has been used as the variable selection 
method. Starting from a population of 100 random models with a number 
of variables equal to or less 3, the algorithm has explored new 
combinations of variables, selecting them by a mechanism of 
reproduction/mutation similar to that of biological population evolution. 
The models based on the selected subsets of variables have been 
tested and evaluated by similarity index (S(E,M)). All of the calculations 
have been performed by the in-house software RANA for variable 
selection for WINDOWS/PC [Todeschini, et al. 2003].  
The best model obtained is a very simple model, made of two variables: 
the number of nitrogen atoms (nN) and the complementary information 
content (neighbourhood symmetry of order 2) CIC2. The maximal 
elements of the experimental Hasse diagram are the more toxic element 
(priority elements), whereas the minimal elements are the less toxic. 
According to the model Hasse diagram, the more toxic elements are 
those with a greater number of nitrogen atoms and with a greater value 
of CIC2. The model Hasse diagram is shown in Figure 4.20: it is 
arranged on eleven levels and characterized by 171 comparable pairs of 
elements and 164 contradictions. The two model descriptors value are 
illustrated in Table 4.33. The diagram points out lenacil and terbuthylazin 
as maximal elements, the former is characterized by the highest CIC2 
value (CIC2 = 2.114), the latter by both high number of nitrogen atoms 
(nN = 5) and quite high CIC2 value (CIC2 = 1.799). 2,4-
Dichlorophenoxyacetic acid is the least element, followed by MCPA (2-
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Methyl-4-chlorophenoxyacetic acid): they are both characterised by 
absence of nitrogen atoms and low CIC2 value. 
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Figure 4.20 – Model Hasse diagram developed with nN and CIC2 descriptors. 
 

The model diagram provides 22 equivalent classes over 23 chemicals: 
bromoxynil and ioxynil belong to the same equivalence class. A low 
degeneracy (D = 0.05; kstd = 0) and a high entropy (H* = 0.98; G* = 1) 
are detected. The diagram shows a medium capability of discriminating 
elements according to different ranks (DbyR = 0.67) and selectivity (T = 
0.48) and low element diversity (div = 0.10). The number of 
comparability is not too high (Χ = 0.68) and thus the stability quite low (P 
= 0.33; StR = 0.17). The diagram is pretty complex (Cx’ = 0.65), since 
the two contributions of comparability and incomparability are similar.  
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ID Substance nN CIC2 

1 Aclonifen 2 1.228 

2 Atrazin 5 1.376 

3 Lenacil 2 2.114 

4 Chloridazon 3 0.885 

5 Alachlor 1 1.366 

6 Metolachlor 1 1.241 

7 Tribenuron-methyl 5 1.134 

8 Thifensulfuron-methyl 5 0.744 

9 Bromoxynil 1 0.571 

10 Carbofuran 1 1.194 

11 Cycloxydim 1 1.603 

12 Ethofumesate 0 1.244 

13 Isofenphos 1 1.622 

14 Isoxaflutol 1 0.885 

15 MCPA 0 0.523 

16 Terbuthylazin 5 1.799 

17 Metamitron 4 1.005 

18 Ioxynil 1 0.571 

19 Triasulfuron 5 0.655 

20 Isoproturon 2 1.719 

21 Linuron 2 0.971 

22 Pendimethalin 3 1.718 

23 2,4-Dichlorophenoxyacetic acid 0 0.461 

Table 4.33 – Model descriptors value for 23 chemicals. 
 
 
4.7.5 Experimental and model ranking comparison 

Variable subset selection has been performed by GAs optimising the 
similarity index S(E,M) defined in chapter 3. The agreement degree 
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between experimental and model diagrams is quite satisfactory (S(E,M) 
= 76.3). The Tanimoto indices have been calculated: 

T(0,0) = 87.9  T(0,1) = 80.7  T(1,1) = 58.2 
 
The “goodness of fitting” of the partial ranking model calculated by the 
similarity index is lower than that calculated by both T(0,0) and T(0,1) 
but higher than the one by T(1,1), confirming that the similarity index is a 
reasonable compromise between the over optimistic and the over 
pessimistic evaluation provided by T(0,0), T(0,1) and T(1,1) respectively, 
than the T(0,1) index. According to the ranking indices values 
differences between experimental and model diagram can be 
highlighted. Being the model diagram characterised by a higher number 
of incomparabilities than the experimental diagram (164 vs 60) it shows 
lower values of comparability, discrimination power by ranking, 
selectivity and higher values of diversity and stability as well. 
 
 
4.7.6 Interval estimation 

The experimental ranking of each chemical has been estimated by the 
obtained ranking model, according to the procedure described in 
Chapter3. Thus, by the connectivity operator, the experimental ranking 
of any chemical u has been estimated looking for those two elements s 
and t, which are connected (comparable) to u, i.e. C(s,u) > 0 (with s 
above u) and C (u,t) > 0 (with u above t), located at the shortest path 
and which experimental value difference constitutes the smallest positive 
interval. Then, the calculated intervals have been compared to the 
corresponding experimentally derived intervals, obtained by deleting 
each chemical from the experimental ranking diagram; and using the 
remaining training set elements to calculate the experimental intervals of 
the deleted element from the experimental ranking diagram.  
Analysing one experimental response at a time, for each chemical the 
standardised disagreement δ i r  between its experimentally derived 

interval and model-calculated interval has been calculated. The 
experimentally derived intervals and the calculated intervals for 
Log(1/EC10), Log(1/EC50), Log(1/EC90), together with the 
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corresponding standardise disagreements are illustrated in Table 4.34, 
4.35 and 4.36, respectively. 
 
Response: LOG(1/EC10) Experimental  Calculated   

ID Substance Min Max Min Max δEC10 

1 Aclonifen 1.990 2.706 -1.169 1.363 0.810 

2 Atrazin 1.391 1.642 1.215 1.642 0.037 

3 Lenacil 1.683 2.024 > 1.363 - 0.067 

4 Chloridazon -0.689 0.434 -1.211 0.657 0.156 

5 Alachlor 0.952 1.642 0.434 1.574 0.123 

6 Metolachlor 0.112 1.363 -1.169 1.215 0.299 

7 Tribenuron-methyl 1.391 1.916 0.657 1.574 0.225 

8 Thifensulfuron-methyl -1.169 0.434 1.391 1.683 0.596 

9 Bromoxynil -1.891 -0.689 -2.706 -1.211 0.280 

10 Carbofuran -1.498 -0.689 -1.211 0.434 0.295 

11 Cycloxydim -1.891 -1.169 0.434 0.952 0.595 

12 Ethofumesate -1.169 0.434 -2.706 1.215 0.485 

13 Isofenphos 0.112 1.363 -1.498 1.363 0.337 

14 Isoxaflutol -1.498 -0.689 -0.689 -0.045 0.304 

15 MCPA - < -1.498 -1.891 -1.878 0.079 

16 Terbuthylazin 1.574 1.916 > 2.706 - 0.237 

17 Metamitron 0.112 1.363 -0.045 1.683 0.100 

18 Ioxynil -1.169 -0.045 -2.706 -1.211 0.556 

19 Triasulfuron 0.952 1.574 -0.689 0.057 0.473 

20 Isoproturon 0.952 1.574 0.952 1.642 0.014 

21 Linuron 1.683 2.024 -1.211 0.657 0.676 

22 Pendimethalin > 2.024 - 0.952 1.642 0.224 

23 a2,4- D - < -1.498 - < -2.706 0.253 

Table 4.34 – Experimental LOG(1/EC10)interval estimation. (Bold fonts indicate 
wrong interval estimations). a2,4-Dichlorophenoxyacetic acid. 
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Response: LOG(1/EC50) Experimental  Calculated   

ID Substance Min Max Min Max δEC50 

1 Aclonifen 1.306 2.069 1.057 2.069 0.050 

2 Atrazin 0.273 1.057 0.853 1.159 0.136 

3 Lenacil 1.159 1.527 > 0.641 - 0.104 

4 Chloridazon -1.534 0.087 -1.956 -0.329 0.168 

5 Alachlor 0.087 1.159 0.087 0.745 0.083 

6 Metolachlor -0.723 0.641 -2.121 0.853 0.322 

7 Tribenuron-methyl 0.273 1.057 -0.329 0.745 0.183 

8 Thifensulfuron-methyl -1.956 -0.329 0.273 0.597 0.510 

9 Bromoxynil -2.902 -1.534 -2.902 -1.956 0.084 

10 Carbofuran -2.445 -1.588 -1.956 0.087 0.433 

11 Cycloxydim -2.902 -2.121 -1.588 -0.890 0.402 

12 Ethofumesate -2.121 -0.890 -2.902 0.853 0.505 

13 Isofenphos -1.139 0.273 -2.445 0.641 0.335 

14 Isoxaflutol -2.445 -1.534 -1.534 -0.723 0.344 

15 MCPA - < -2.445 -2.932 -2.115 0.066 

16 Terbuthylazin 0.853 1.306 > 2.069 - 0.243 

17 Metamitron -0.723 0.641 -0.723 0.597 0.009 

18 Ioxynil -1.956 -0.723 -2.902 -1.956 0.436 

19 Triasulfuron -0.329 0.597 -1.534 -1.139 0.426 

20 Isoproturon 0.087 0.745 -0.890 1.159 0.278 

21 Linuron 0.745 1.527 -1.956 -0.329 0.696 

22 Pendimethalin > 1.527 - -0.723 1.159 0.450 

23 a2,4- D - < -2.445 - < -2.902 0.091 

Table 4.35 – Experimental LOG(1/EC50)interval estimation. (Bold fonts indicate 
wrong interval estimations).  a2,4-Dichlorophenoxyacetic acid. 
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Response: LOG(1/EC90) Experimental  Calculated   

ID Substance Min Max Min Max δEC90 

1 Aclonifen 1.027 1.663 0.463 0.852 0.810 

2 Atrazin 0.166 0.463 0.621 0.852 0.037 

3 Lenacil 0.852 1.067 > 0.166 - 0.067 

4 Chloridazon -2.072 -0.078 -2.431 -0.957 0.156 

5 Alachlor -0.078 0.852 -0.078 0.415 0.123 

6 Metolachlor -1.155 0.166 -2.728 0.621 0.299 

7 Tribenuron-methyl -0.440 0.463 -0.957 0.415 0.225 

8 Thifensulfuron-methyl -2.352 -2.119 -0.440 -0.095 0.596 

9 Bromoxynil -3.369 -2.072 -3.729 -2.431 0.280 

10 Carbofuran -3.048 -2.671 -2.431 -0.078 0.295 

11 Cycloxydim -3.369 -2.728 -2.671 -2.119 0.595 

12 Ethofumesate -2.728 -2.119 -3.729 0.621 0.485 

13 Isofenphos -2.335 -0.440 -3.048 0.166 0.337 

14 Isoxaflutol -3.048 -2.335 -2.072 -1.155 0.304 

15 MCPA - < -3.048 -3.369 -2.671 0.079 

16 Terbuthylazin 0.621 1.027 > 1.663 - 0.237 

17 Metamitron -1.155 0.166 -1.155 -0.095 0.100 

18 Ioxynil -2.352 -1.155 -3.729 -2.431 0.556 

19 Triasulfuron -0.957 -0.095 -2.352 -2.335 0.473 

20 Isoproturon -0.078 0.415 -2.119 0.852 0.014 

21 Linuron 0.415 1.067 -2.431 -0.957 0.676 

22 Pendimethalin > 1.067 - -1.155 0.852 0.224 

23 a2,4- D - < -3.048 - < -3.729 0.253 

Table 4.36 – Experimental LOG(1/EC90)interval estimation. (Bold fonts indicate 
wrong interval estimations). a2,4-Dichlorophenoxyacetic acid. 
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4.7.7 Prediction uncertainty 

For each response the interval estimation uncertainty has been 
calculated. The topological uncertainty measures (TU), the normalised 
rank uncertainties above and below ( Du

sup  and Du
inf ), and the 

experimental uncertainty Ryr for Log(1/EC10), Log(1/EC50) and 
Log(1/EC90) responses are collected in Table 4.37, 4.38 and 4.39, 
respectively. 
 
It can be pointed out that the entire set of intervals has been estimated 
by the first shell of neighbourhoods, excepted for Cycloxydim and 
Aclonifen, the latter only as far as concerns on Log(1/EC90) response. 
This result means that the interval calculated are mostly in agreement 
with the experimental ones and only in a few cases the interval provided 
by exploring the first shell of neighbourhoods was not a positive interval 
requiring the second shell of neighbourhoods exploration. 
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Response: Log(1/EC10)     

ID Substance TU Du
sup  Du

inf  Ryu 

1 Aclonifen 2 0.00 0.00 0.529 

2 Atrazin 2 0.00 0.00 0.089 

3 Lenacil - - 0.00 - 

4 Chloridazon 2 0.00 0.00 0.391 

5 Alachlor 2 0.00 0.00 0.238 

6 Metolachlor 2 0.00 0.00 0.499 

7 Tribenuron-methyl 2 0.00 0.00 0.192 

8 Thifensulfuron-methyl 2 0.00 0.00 0.061 

9 Bromoxynil 2 0.00 0.00 0.313 

10 Carbofuran 2 0.00 0.00 0.344 

11 Cycloxydim 3 0.00 0.11 0.108 

12 Ethofumesate 2 0.00 0.00 0.820 

13 Isofenphos 2 0.00 0.00 0.598 

14 Isoxaflutol 2 0.00 0.00 0.135 

15 MCPA 2 0.00 0.00 0.004 

16 Terbuthylazin - - 0.00 - 

17 Metamitron 2 0.00 0.00 0.361 

18 Ioxynil 2 0.00 0.00 0.313 

19 Triasulfuron 2 0.00 0.00 0.156 

20 Isoproturon 2 0.00 0.00 0.144 

21 Linuron 2 0.00 0.00 0.391 

22 Pendimethalin 2 0.00 0.00 0.144 

23 a2,4- D - 0.00 - - 

Table 4.37 – Uncertainty measures on Log(1/EC10) interval estimation. a2,4-
Dichlorophenoxyacetic acid. 
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Response: Log(1/EC50)     

ID Substance TU Du
sup  Du

inf  Ryu 

1 Aclonifen 2 0.00 0.00 0.202 

2 Atrazin 2 0.00 0.00 0.061 

3 Lenacil - - 0.00 - 

4 Chloridazon 2 0.00 0.00 0.325 

5 Alachlor 2 0.00 0.00 0.132 

6 Metolachlor 2 0.00 0.00 0.595 

7 Tribenuron-methyl 2 0.00 0.00 0.215 

8 Thifensulfuron-methyl 2 0.00 0.00 0.065 

9 Bromoxynil 2 0.00 0.00 0.189 

10 Carbofuran 2 0.00 0.00 0.408 

11 Cycloxydim 3 0.00 0.11 0.140 

12 Ethofumesate 2 0.00 0.00 0.751 

13 Isofenphos 2 0.00 0.00 0.617 

14 Isoxaflutol 2 0.00 0.00 0.162 

15 MCPA 2 0.00 0.00 0.163 

16 Terbuthylazin - - 0.00 - 

17 Metamitron 2 0.00 0.00 0.264 

18 Ioxynil 2 0.00 0.00 0.189 

19 Triasulfuron 2 0.00 0.00 0.079 

20 Isoproturon 2 0.00 0.00 0.410 

21 Linuron 2 0.00 0.00 0.325 

22 Pendimethalin 2 0.00 0.00 0.376 

23 a2,4- D - 0.00 - - 

Table 4.38 – Uncertainty measures on Log(1/EC50) interval estimation. a2,4-
Dichlorophenoxyacetic acid. 
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Response: Log(1/EC90)     

ID Substance TU Du
sup  Du

inf  Ryu 

1 Aclonifen 3 0.11 0.00 0.072 

2 Atrazin 2 0.00 0.00 0.043 

3 Lenacil - - 0.00 - 

4 Chloridazon 2 0.00 0.00 0.273 

5 Alachlor 2 0.00 0.00 0.091 

6 Metolachlor 2 0.00 0.00 0.621 

7 Tribenuron-methyl 2 0.00 0.00 0.254 

8 Thifensulfuron-methyl 2 0.00 0.00 0.064 

9 Bromoxynil 2 0.00 0.00 0.241 

10 Carbofuran 2 0.00 0.00 0.436 

11 Cycloxydim 3 0.00 0.11 0.102 

12 Ethofumesate 2 0.00 0.00 0.807 

13 Isofenphos 2 0.00 0.00 0.596 

14 Isoxaflutol 2 0.00 0.00 0.170 

15 MCPA 2 0.00 0.00 0.129 

16 Terbuthylazin - - 0.00 - 

17 Metamitron 2 0.00 0.00 0.197 

18 Ioxynil 2 0.00 0.00 0.241 

19 Triasulfuron 2 0.00 0.00 0.003 

20 Isoproturon 2 0.00 0.00 0.551 

21 Linuron 2 0.00 0.00 0.273 

22 Pendimethalin 2 0.00 0.00 0.372 

23 a2,4- D - 0.00 - - 

Table 4.39 – Uncertainty measures on Log(1/EC90) interval estimation. a2,4-
Dichlorophenoxyacetic acid. 
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4.7.8 Model quality 

By comparing the experimentally derived intervals with the calculated 
ones, an average disagreement has been calculated on each response: 
 

δLog(1/EC10) 0.314=   δLog(1/EC50) 0.276=  δLog(1/EC90) 0.293=  
 
The average disagreement between the quantitative experimental 
values and their derived intervals has been calculated: 
 

~
δLog(1/EC10) 0.171=  ~

δLog(1/EC50) 0.190=  ~
δLog(1/EC90) 0.150=  

 
The uncertainty increase due to the replacement of a metric scale with 
an ordinal scale, calculated as arithmetic mean on all the three 
experimental attributes, is equal to 0.170.  
 
For each response, the model quality has been evaluated, both by 
complement of the average disagreement between experimental and 
calculated intervals ( Qr ) and by the ratio of the number of interval 
correctly calculated by the model on the total number of intervals 
(NERr ): 
 

Q 0.686Log(1/EC10) =   Q 0.724Log(1/EC50) =  Q 0.707Log(1/EC90) =  

NER 0.565Log(1/EC10) =    NER 0.565Log(1/EC50) =    NER 0.478Log(1/EC90) =  

 
The overall ranking model quality, i.e. taking into account all the three 
responses, has been evaluated from the above parameters by arithmetic 
means (QT ; NERT), geometric mean (QG ;NERG) and by the minimum 
value obtained on the three responses (QM ; NERM): 
 

QT 0.705=    QG 0.705=   QM 0.686=  

NERT 0.536=   NERG 0.535=  NERM 0.478=  
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The present study reveals that partial order ranking provides an 
attractive alternative to conventional QSAR modelling tools. The method 
appears, from a mathematical point of view, robust and transparent. It is 
thus possible to using partial ranking techniques to develop ranking 
models and it is suggested that ranking models have a general potential 
in the area of risk assessment of environmentally hazardous chemicals. 
However, further analyses of the proposed method appear appropriate 
to investigate validation techniques suitable for ranking models and to 
evaluate the potential of ranking models for QSAR modelling. 
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CHAPTER 5 
 

RANA: software for Ranking ANalysis 
Alghoritms 

 
 
 
 
RANA software has been developed for ranking analysis data 
exploration and modelling. It allows performing ranking evaluation by 
both total and partial ranking procedures. The implemented total order 
ranking methods are: Desirability functions, Utility functions, Dominance 
functions, classical and quantitative Concordance analysis, Absolute 
reference method. Ranking analysis by Hasse diagram technique is also 
provided. Both total and partial analysis can be analysed by ranking 
indices. Moreover both total and partial ranking models by genetic 
algorithms variable subset selection can be performed. RANA software 
is a 32 bit application and can be run on Windows platforms. The 
programming language is Microsoft Visual Basic 6.0. Figure 5.1 shows 
the main form of the software. 
 
 
5.1 Data setup 
Data in the standard ASCII text format can be loaded by RANA. Once 
the data has been loaded, the data setup menu allows the user to select 
the independent variables X and the response variable Y. By default, all 
the objects are assigned to the training set except for those lacking 
values in at least one independent variable and the response. The user 
can modify, by hand, the object allocation by forcing an object’s 
exclusion from the analysis. Both X and Y variables can be transformed 
before analysis. The available transformations are the logarithmic, 
inverse and square root. Moreover, to perform ranking analysis the user 
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has to define the values and situations of optimum, i.e. for each Y 
variable it is necessary to ascertain explicitly if the best condition is 
satisfied by a minimum or a maximum criterion value, and the trend from 
the minimum to the maximum must also be established. The Y rank 
transformation available are: linear, sigmoid, logarithmic, exponential, 
step, normal, parabolic, Laplace, triangular and box and their 
correspondent inverse transformations. Each variable can be weighted 
in order to take into account its importance in the ranking analysis. 
 
 
5.2 Ranking explorative analysis 
Once the data have been loaded and the data and criteria setup 
performed the Ranking methods menu is activated. Two options are 
available: total order ranking or partial order ranking. The total ranking 
option provides a table form organised in six tables (Figure 5.1). The first 
one provides the ranking list of the element according their ranking 
scores calculated by Desirability functions, Utility functions, Dominance 
functions, classical and quantitative Concordance analysis, Absolute 
reference method. The total ranking results can be store in ACII text 
format. The second and third tables provides line and histograms plots 
respectively. These plots allow an easy comparison of the ranking 
scores calculated by the seven ranking methods, thus they are useful to 
visually detect method differences. The third table provides the so-called 
Pareto plot, which is a histogram plot where the elements are ranked 
according to their ranking score. The user can easily select the ranking 
method, whose score is then used in the graph. In the fifth table scatter 
plots and 3D plots can be develop, in order to analyse and compare 
elements according to their ranking scores. The last Table provides 
ranking indices values in order to allow an immediate analysis of the 
ranking quality and an easy comparison of the obtained rankings. 
 



Ranking Analysis Algorithms software 

258 

 

Figure 5.1 – Total ranking table form. 
 
The partial ranking option allows performing partial ranking analysis by 
Hasse diagram technique. Its table form is made of five tables (Figure 
5.2). The first one provides general information related to the Hasse 
diagram obtained: the number of levels (NL), the number of equivalence 
classes with more than one element (NECA), the number of elements in 
the level that contains the most elements (NEL), the number of 
maximals and minimals (N.Max and N.Min), the number of equivalence 
classes (Z), the number of comparabilities (V) and the number of 
incomparabilities (U). In the second table several ranking indices for 
partial rankings are collected: the StR and P stability indices, the 
Brüggemann standardized degeneracy index (kstd) and the absolute 
degeneracy degree (D), the comparability index (χ), the discrimination 
power by ranking index (DbyR), the selectivity index (T), the diversity 
index (div), the standardized Shannon (H*), the standardized Gini 
entropy index (G*), the information energy content (IE) and the two 
complexity indices Cx and Cx’’. 
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Figure 5.2 – Partial ranking table form. 
 
The level structure table provide information on the level structure, 
providing the number and list of elements in each level. Then, the fourth 
table contains the Hasse matrix, which can be stored by the user. Finally 
the Hasse diagram is provided in the last table. 
 
5.3 Ranking modelling 
Both total and partial ranking models can be developed by RANA 
software. The Genetic Algorithm (GA-VSS) approach is here used as the 
variable selection method to search for the best ranking models within a 
wide set of variables. Once the data have been loaded and the criteria 
setup performed the GA setup menu is activated. The options available 
in this menu are concerned with the Genetic Algorithm parameters, the 
variable management and the choice of objective function. 
The five main parameters for the Genetic Algorithm are: 
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1. Population size: maximum number of models in a population 
(default: 50). 

2. Maximum allowed model size: maximum number of variables in a 
model (default: 3). 

3. Crossover and mutation trade-off: user-defined value of the T 
parameter which sets the values of the crossover and mutation 
probabilities (default: 0.5). 

4. Number of retained models for each size: number of the best models 
for each size surviving in the population regardless their quality 
(default: 3). This option is important to save, in the final population, 
also the best models of lower complexity e.g., the first three models 
with one variable, the first three models with two variables, etc. 

5. Selection pressure: user-defined value of the B parameter which sets 
the parent selection operator (default: 0.5). 

 
The user-defined genetic algorithm parameters can be differentiated in 
the evolution procedure. Several objective functions are available in 
RANA for evaluating the quality of population individuals. For total 
ranking model the optimised parameter is the Spearman rank correlation 
coefficient, while for partial ranking models the user can select the 
following objective functions: 
 

1. T(0,1) Tanimoto index 

2. T(1,1) Tanimoto index 

3. S(E,M) Similarity index 

 

Together with the chosen objective function, the user can select another 
two parameters to be displayed during the evolution process. The 
displayed parameters are the Kendall’s coefficient of concordance WX 
within the X variables, the T(0,0), T(0,1), T(1,1) Tanimoto indices (when 
they are not the one optimised), the absolute degeneracy index (D), the 
discrimination power by ranking (DbyR), the StR stability index, the 
number of levels and (see Figure 5.3).  
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Figure 5.3 – RANA GA setup. 
 

5.3.1 Population evolution view 

Once population optimisation is started, the user can follow the 
populations on two screens. In the first screen the best model is shown, 
described by the objective function value, two other selected fitness 
parameters, its size and variables, together with the maximum allowed 
number of model variables and the number of population individuals 
(models). The second screen shows the evolution of the population; all 
the population models are displayed, described by their objective 
function values, two other selected fitness parameters, model size, 
model variables.  
 

5.3.2 Modify population evolution 

At any time the user can choose to modify the population evolution 
genetic parameters to run through new evolution directions. The 
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parameters are usually changed when the population has become so 
stable that no new individuals enter the population. The maximum 
number of allowed variables in a model could be increased if the optimal 
model complexity has not yet been reached. If model searching has 
been initialised by small sized models, it is common practice to increase 
the model variable number for a satisfactory exploration of the model 
space, until the population becomes stable or the desired objective 
function has been obtained. Since the coverage of the search space is 
influenced by crossover/mutation trade off and selection pressure, these 
can be changed to augment the diversity of the population when it falls 
into a local optima and tends to be constituted by very similar 
individuals. In this case the crossover/mutation trade off should be 
increased, while the selection pressure should be decreased to enhance 
the random process of GA and thus produce new genetic material in the 
population. On the other hand, when the population has been initialised 
favouring high diversity among individuals, the crossover/mutation trade 
off should be decreased and the selection pressure increased to force 
the evolution towards local, or hopefully absolute, optima. 
 

5.3.3 Variable frequency analysis 

This menu allows the analysis of variable frequency in the final 
population. In particular, the total number and percentage of variables 
present in the final models is given, together with a table showing the 
frequency of each variable in the population calculated on the basis of 
only the final models. Variable frequency analysis can be useful to detect 
those variables showing high importance in ranking modelling. 
 
 

5.3.4 Saving results 

The final population models can be saved in a tabulated ASCII file where 
the models are listed according to the decreasing value of their quality. 
Each model is described by: 
 model size; 
 model variables; 
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 optimised parameter 
 multivariate Kendall’s coefficient of concordance among the 

independent variables X, WX; 
 multivariate Kendall’s coefficient of concordance among the 

independent variables X plus the response, WXY; 
 
Other results that can be saved in RANA are: 

Experimentally derived and model intervals calculated or predicted by all 
the selected models and their standardised disagreement δ i r   

Rank uncertainty measures ( Du
sup  and Du

inf ) 
Experimental uncertainty Ry 
Overall ranking model quality parameters (QT , QG , QM ) 
 
 

5.3.5 RANA constraints 

Maximum number of objects: 3000 
Maximum number of variables: 2000 
Maximum number of variables in a model: 20 
Maximum number of individuals (models): 100 
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CONCLUSIONS 
 
 
 
 
The intrinsic complexity of the systems analysed in scientific research 
together with the significant increase of available data require availability 
of suitable methodologies for multivariate statistics analysis and motivate 
the endless development of new methods. Moreover, the increasing of 
problem complexity leads to the decision processes becoming more 
complex, requiring the support of new tools able to set priorities and 
define rank order of the available options. Ordering is one of the possible 
ways to analyse data and to get an overview over the elements of a 
system. In the present thesis order ranking strategies have been 
investigated. Ordinal scaling is usually seen as a “weaker” property than 
metric scaling, and this means that element ranking based on a set of 
attributes is seen as “basic information” which is supplemented with 
metric information. Even thought often considered as less informative 
techniques, total and partial order ranking (POR) methods gave 
evidence to be efficient tool to perform data analysis, evaluating order 
relationship among the elements of the system investigated. The well 
known total order ranking methods, have been investigated and some 
new contributions have been here proposed.  
The less known partial ranking analysis by Hasse diagram technique 
has been deeply examined and compared with the total order approach. 
Since a complete evaluation by ranking technique needs to be 
supported by a pre-processing phase to define an adequate data matrix, 
as well as a post-processing phase to extract information and decisions 
on the system investigated, investigations have been carried out on both 
these phases. Comparison of the main pre-processing statistical 
techniques, clustering, principal component analysis and broad order 
statistics pointed out that broad order statistics seems to be a very 
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suitable pre-processing tool, providing a satisfactory solution to those 
ranking drawbacks related to noise and measurement error.  
As far as concerns the post-processing phase, which deals with the 
ranking quality establishment, new ranking indices have been here 
proposed, and compared with those found in literature. Tested on both 
theoretical and real data, they result suitable to represent the main 
ranking properties and to encode unique information. However, further 
analysis on diverse datasets appears appropriate to fully elucidate their 
meaning and utility.  
Order ranking methods have been analysed even for modelling 
purposes and they have been demonstrated to be a possible alternative 
to conventional statistical modelling such as multilinear regression 
(MLR) or classification.  
A complete procedure to perform a ranking model has been here 
proposed, based on the following main steps: experimental and model 
ranking development, comparison of the experimental and model 
rankings to evaluate model reliability, and finally interval estimations to 
provide experimental ranking from the ranking model obtained.  
In order to allow processing of data described by a wide set of variables 
the Genetic Algorithm (GA-VSS) approach has been proposed as the 
variable selection method. Total and partial ranking optimisation 
parameters have been investigated, and the new one proposed has 
been compared with those already published in the literature. Interval 
estimation by ranking models have been analyzed deeply and a new 
approach has been proposed here, together with a few measures of 
prediction uncertainty. It is further worthwhile to highlight that the 
procedure proposed can be located between fiitting and predictive 
approaches, since the interval estimation and the model validation 
appear combined in one step. In fact, the model calculated intervals are 
obtained by deleting one element at a time from the model ranking 
diagram, and using the remaining training set elements to calculate the 
model intervals of the deleted element from the model ranking diagram. 
Thus, it seems quite similar to a leave – one – out cross validation 
procedure (LOO technique), where each element is taken away, one at 
a time and the response for the deleted element is calculated from the 
model. However, in ranking model searching, the validation is not 
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performed during the evolutionary optimisation procedure, but the model 
predictive ability is simulated once the model has been defined. The 
approach proposed seems, from a mathematical point of view well 
grounded. However, further analyses of the interval estimation 
procedure as well as of the uncertainty evaluation are recommended. 
Moreover, one of the main theoretical aspect not yet fully investigated 
concerns the search for validation techniques suitable for ranking 
models. 
Finally, several different new fields have been here explored by ranking 
methodologies, these revealing their effective capability to catch new 
useful kind of information from multivariate data. 
Among them, it seems particularly interesting the ranking method 
applicability on three-way data. 
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